【題目】(1)(x+1)2-3=0; (2)2x2-3=5x;
(3)3x2-6x+2=0 ; (4)9(x-2)2-4x2=0.
【答案】(1);(2);(3);(4).
【解析】
(1)先變形得到(x+1)2=3,再利用平方根的定義得到x+1=±,然后解兩個一次方程即可;
(2)分解因式,即可得出兩個一元一次方程,求出方程的解即可;
(3)將原方程兩邊同時除以3,然后利用配方法即可得到結(jié)果;
(4)先移項,再分解因式,即可得出兩個一元一次方程,求出方程的解即可.
解:(1)(x+1)2-3=0
x+1=±
x=±-1
x=-1,x=--1;
(2)2x2-3=5x
(2x+1)(x-2)=0
2x+1=0,x-2=0,
x=-,x=3;
(3)3x2-6x+2=0
,
(x-1)=,
x=1+,x=1-;
(4)9(x-2)2-4x2=0
(5x-6)(x-6)=0
x=,x=6.
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司需招聘一名員工,對應聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:
筆 試 | 面 試 | 體 能 | |
甲 | 85 | 80 | 75 |
乙 | 80 | 90 | 73 |
丙 | 83 | 79 | 90 |
(1)根據(jù)三項得分的平均分,從高到低確定三名應聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A、B、C分別是⊙O上不重合的三點,連接AC、BC.
(1)如圖2,點P是直線AB上方且在⊙O外的任意一點, 連接AP、BP.試比較∠APB與∠ACB的大小關(guān)系,并說明理由;
(2) 若點P是⊙O內(nèi)任意一點, 連接AP、BP,比較∠APB與∠ACB大小關(guān)系;
(3)如圖3,在平面直角坐標系xOy中,點A與點B的坐標分別是(1,0),(5,0),點P是直線y=-x上一動點,當∠APB取得最大值時,直接寫出點P的坐標,并簡要說明點P的位置是如何確定的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知k為實數(shù),關(guān)于x的方程為x2﹣2(k+1)x+k2=0.
(1)請判斷x=﹣1是否可為此方程的根,說明理由.
(2)設方程的兩實根為x1,x2,當2x1+2x2+1=x1x2時,試求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,點D是⊙O 上一點,⊙O的切線CB與AD的延長線交于點B,點F是直徑AC上一點,連接DF并延長交⊙O于點E,連接AE.
(1)求證:∠ABC=∠AED;
(2)連接BF,若AD=,AF=6,tan∠AED=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(類比概念)三角形的內(nèi)切圓是以三個內(nèi)角的平分線的交點為圓心,以這點到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形
(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系
猜想結(jié)論: (要求用文字語言敘述)
寫出證明過程(利用圖1,寫出已知、求證、證明)
(性質(zhì)應用)
①初中學過的下列四邊形中哪些是圓外切四邊形 (填序號)
A:平行四邊形:B:菱形:C:矩形;D:正方形
②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長是 .
③圓外切四邊形的周長為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com