【題目】已知二次函數(shù)y =ax2+bx+ c的圖象如圖,有以下結(jié)論:①a+b+c<0; ②a-b+c >2;③abc>0;④4a-2b+c <0;⑤c-a>1.其中所有正確結(jié)論的序號是( )
A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,軸于點(diǎn),點(diǎn)在反比例函數(shù)的圖像上.
(1)求反比例函數(shù)的表達(dá)式;
(2)求面積;
(3)在坐標(biāo)軸上是否存在一點(diǎn),使得以、、三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,若存在,請直接寫出所有符合條件的點(diǎn)的坐標(biāo);若不存在,簡述你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6,AD=8,沿BD折疊使點(diǎn)A到點(diǎn)A′處,DA′交BC于點(diǎn)F.
(1)求證:FB=FD;
(2)求證:CA′∥BD;
(3)求△DBF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形中,,,且,,對角線.
求證:四邊形是矩形;
如圖,若動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒,連接、,若,求的值;
如圖,若點(diǎn)在對角線上,,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿運(yùn)動(dòng)至點(diǎn)止.設(shè)點(diǎn)運(yùn)動(dòng)了秒,請你探索:從運(yùn)動(dòng)開始,經(jīng)過多少時(shí)間,以點(diǎn)、、為頂點(diǎn)的三角形是等腰三角形?請求出所有可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測試,各項(xiàng)成績?nèi)缦拢▎挝唬悍郑?/span>
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計(jì)與概率 | 綜合與實(shí)踐 | |
學(xué)生甲 | 90 | 94 | 86 | 90 |
學(xué)生乙 | 94 | 82 | 93 | 91 |
(1)分別計(jì)算甲、乙成績的平均數(shù)和方差;
(2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、綜合與實(shí)踐的成績按3:3:2:2計(jì)算,那么甲、乙的數(shù)學(xué)綜合素質(zhì)成績分別為多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)yx3的圖象與反比例函數(shù)y(k為常數(shù),且k0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車都從A地前往B地,如圖分別表示甲、乙兩車離A地的距離S(千米)與時(shí)間t(分鐘)的函數(shù)關(guān)系.已知甲車出發(fā)10分鐘后乙車才出發(fā),甲車中途因故停止行駛一段時(shí)間后按原速繼續(xù)駛向B地,最終甲、乙兩車同時(shí)到達(dá)B地,根據(jù)圖中提供的信息解答下列問題:
(1)甲、乙兩車行駛時(shí)的速度分別為多少?
(2)乙車出發(fā)多少分鐘后第一次與甲車相遇?
(3)甲車中途因故障停止行駛的時(shí)間為多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E在BC上,連接AD、AE,如果只添加一個(gè)條件使∠DAB=∠EAC,則添加的條件不能為( )
A. BD=CE B. AD=AE C. DA=DE D. BE=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com