【題目】已知二次函數(shù).
用配方法求該拋物線的對稱軸,并說明:當取何值時,的值隨值的增大而減。
將二次函數(shù)的圖象經(jīng)過怎樣的平移能得到的圖象?
【答案】(1)對稱軸為,當時,隨的增大而減小;(2)向上平移個單位,再向右平移個單位.
【解析】
(1)可通過將二次函數(shù)y=-x2+3x-2化為頂點式,再依次判斷對稱軸、頂點坐標、開口方向及函數(shù)增減性等問題.
(2)將函數(shù)y=-x2+3x-2化為y=-(x-3)2+,將二次函數(shù)y=-x2的圖象經(jīng)過平移能得到y(tǒng)=-(x-3)2+的圖象,x需減3,y需加,在x軸方向上移動時減為向右移動,在y軸方向上移動時加為向上移動.
把拋物線化為頂點坐標式為,
故對稱軸為,當時,隨的增大而減。
函數(shù)數(shù)的圖象先向上平移個單位,再向右平移個單位,得到函數(shù)的圖象.
科目:初中數(shù)學 來源: 題型:
【題目】為了進一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號的自行車比B型號的自行車的單價低30元,買8輛A型號的自行車與買7輛B型號的自行車所花費用相同.
(1)A,B兩種型號的自行車的單價分別是多少?
(2)若購買A,B兩種自行車共600輛,且A型號自行車的數(shù)量不多于B型號自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩張完全相同的矩形紙片、按如圖方式放置,為重合的對角線.重疊部分為四邊形,
試判斷四邊形為何種特殊的四邊形,并說明理由;
若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=kx(k≠0)經(jīng)過點(m,m)(m<0).線段BC的兩個端點分別在x軸與直線y=kx上滑動(B、C均與原點O不重合),且BC=.分別作BP⊥x軸,CP⊥直線y=kx,直線BP、CP交于點P.經(jīng)探究,在整個滑動過程中,O、P兩點間的距離為定值,則該距離為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BD是對角線.分別過點A、C作AE⊥BD于點E,CF⊥BD于點F,且AE=CF
(1)求證:AB∥CD
(2)若E是BF中點,且△ABE的面積為1,則四邊形ABCD的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.
(1)求證:DB=DE;
(2)若∠BDE=70°,求∠AOB的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某國偵察機飛抵我國近海搞偵察活動,我戰(zhàn)斗機奮起攔截,地面雷達測得:當兩機都處在雷達的正東方向的上空并在同一高度時,測得它們仰角分別為,,它們與雷達的距離分別為千米,千米,求此時兩機距離是多少千米?(精確到,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是AB邊上任意一點,E是BC邊中點,過點C作AB的平行線,交DE的延長線于點F,連接BF,CD.
(1)求證:四邊形CDBF是平行四邊形;
(2)若∠FDB=30°,∠ABC=45°,BC=4,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com