【題目】某校為了解七年級男生“跳繩”成績的情況,隨機選取該年級部分男生進行測試.以下是根據(jù)測試成績繪制的統(tǒng)計圖表的一部分.

成績等級

頻數(shù)(人)

頻率

優(yōu)秀

良好

及格

10

02

不及格

01

根據(jù)以上信息,解答下列問題:

1)被測試男生中,成績等級為“優(yōu)秀”的男生人數(shù)占被測試男生總人數(shù)的百分比為________%,成績等級為“及格”的男生人數(shù)為________人;

2)被測試男生的總人數(shù)為________人,成績等級為“不及格”的男生人數(shù)________人;

3)若該校七年級共有570名男生,根據(jù)調查結果,估計該校七年級男生成績等級為“良好”的學生人數(shù).

【答案】13010250;53228

【解析】

1)直接根據(jù)扇形統(tǒng)計圖和統(tǒng)計表即可得出答案;

2)用測試成績?yōu)?/span>及格的頻數(shù)除以頻率即可得出總人數(shù),用總人數(shù)乘以不及格的頻率即可求出不及格的男生人數(shù);

3)用總數(shù)570乘以樣本中等級為良好的男生所占的百分比即可求出答案.

解:(1)從扇形統(tǒng)計圖中可得,成績等級為優(yōu)秀的男生人數(shù)占被測試男生總人數(shù)的百分比為30%,從統(tǒng)計表中可得,成績等級為及格的男生人數(shù)為10人;

2)總人數(shù)為(人),

成績等級為不及格的男生人數(shù)為(人);

3(人)

答:估計該校七年級男生成績等級為良好的有228人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,點OBC上,以線段OC的長為半徑的⊙OAB相切于點D,分別交BC、AC于點EF,連接ED并延長,交CA的延長線于點G

1)求證:∠DOC2G

2)已知⊙O的半徑為3

BE2,則DA   

BE   時,四邊形DOCF為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提升學生的藝術素養(yǎng),某校計劃開設四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學生必須選修且只能選修一門課程,為保證計劃的有效實施,學校隨機對部分學生進行了一次調查,并將調査結果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.

學生選修課程統(tǒng)計表

課程

人數(shù)

所占百分比

聲樂

14

舞蹈

8

書法

16

攝影

合計

根據(jù)以上信息,解答下列問題:

1    

2)求出的值并補全條形統(tǒng)計圖.

3)該校有1500名學生,請你估計選修“聲樂”課程的學生有多少名.

4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎,學校準備從這4人中隨機抽取2人編排“舞蹈”在開班儀式上表演,請用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個班級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖坐標系中有△AOB,A(0,3),B(4,0),在 y 軸上有一點 P,當2BPO= BAO 時,點 P 的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自我省深化課程改革以來,某校開設了:A.利用影長求物體高度,B.制作視力表,C.設計遮陽棚,D.制作中心對稱圖形,四類數(shù)學實踐活動課.規(guī)定每名學生必選且只能選修一類實踐活動課,學校對學生選修實踐活動課的情況進行抽樣調查,將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息解決下列問題:

(1)本次共調查名學生,扇形統(tǒng)計圖中B所對應的扇形的圓心角為度;

(2)補全條形統(tǒng)計圖;

(3)選修D類數(shù)學實踐活動的學生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機抽取2人做校報設計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料,完成(1)、(2)題.

數(shù)學課上,老師出示了這樣一道題:中,,于點,點的延長線上,且,平分于點,垂足為,探究線段的數(shù)量關系,并證明.

同學們經(jīng)過思考后,交流了自己的想法:

小明:“通過觀察和度量,發(fā)現(xiàn)相等.”

小強:“通過觀察和度量,發(fā)現(xiàn)圖中還有其它相等線段.”

小偉:“通過構造全等三角形,經(jīng)過進一步推理,可以得到線段的數(shù)量關系.”

……

老師:“此題還有其它解法,同學們課后可以繼續(xù)探究,互相交流.”

……

1)求證:;

2)探究線段的數(shù)量關系(用含的代數(shù)式表示),并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB,DCB延長線上一點,以BD為邊向上作等邊三角形EBD,連接AD,若AD11,且∠ABE2ADE,則tanADE的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形內接于,對角線的直徑,過點AC的垂線交AD的延長線于點E,點FCE的中點,連接DB,DC,DF

1)求證:DF的切線;

2)若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國古代的數(shù)學專著,它的出現(xiàn)標志中國古代數(shù)學形成了完整的體系.其中有一個問題:“今有二馬、一牛價過-萬,如半馬之價:一馬、二牛價不滿一萬,如半牛之價.問牛、馬價各幾何?”其大意為:現(xiàn)有兩匹馬加一頭牛的價錢超過一萬,超過的部分正好是半匹馬的價錢:一匹馬加上兩頭牛的價錢則不到一萬,不足的部分正好是半頭牛的價錢.問一頭牛、一匹馬各多少錢?設一匹馬值錢、一頭牛值錢,則符合題意的方程組為(

A.B.

C.D.

查看答案和解析>>

同步練習冊答案