【題目】在⊙O 中,AB 為直徑,點(diǎn) P 在BA 的延長線上,PC 為⊙O 的切線,過點(diǎn) A 作AH⊥PC 于點(diǎn) H, 交⊙O 于點(diǎn) D,連接 BC、BD、AC.
(1)如圖 1,求證:∠CAH=∠CAB;
(2)如圖 2,過點(diǎn) C 作 CE⊥AB 于點(diǎn) E,求證:BD=2CE;
(3)如圖 3,在(2)的條件下,點(diǎn) F 在BC 上,連接 DF、EF,若 BG=2AE,∠CFE=45°,OG=1,求線段 EF 的長.
【答案】(1)見解析;(2)見解析;(3).
【解析】
(1)連接OC,根據(jù)切線的性質(zhì)證得,利用半徑相等即可證明;
(2)延長CO交BD于點(diǎn)M,根據(jù)角平分線的性質(zhì)證得,證得四邊形為矩形,推出,,,利用垂徑定理即可證明;
(3)連接CD,過點(diǎn)E作于點(diǎn),于點(diǎn),設(shè),則,,由,推出,,即,再推出,證得,得到,在中,利用勾股定理求得,然后解直角三角形即可求解.
(1)證明:連接OC,
∵PC為圓O的切線,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴;
(2)證明:連接OC,延長CO交BD于點(diǎn)M,
∵,,,
∴,
∵AB為直徑,
∴,
∴,
∴四邊形為矩形,
∴,,,
∴;
(3)解:連接CD,過點(diǎn)E作于點(diǎn),于點(diǎn),
在和中,
∵,,
∴
∴,
∵,
∴,
∵,,
∴,
∴,
∵,
∴設(shè),則,,
∵,
∴,,,,,,
∴,
∴,
∵,,
∵,
∴,
∴,
∵AB為圓O的直徑,
∴,
∴,
∵,
∴,
∵,,
∴,,
∵,
∴,
∵,
∴,
∴,
∴,
在中,,,,
由勾股定理得:,即,
解得:,(舍去)
∴,,
∴,
∴,
在Rt△BSE中,,,
,
∴,
在Rt△FSE中,,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以點(diǎn)B和點(diǎn)C為圓心,大于BC的長為半徑作弧,兩弧相交于點(diǎn)M和N;②作直線MN,分別交邊AB,BC于點(diǎn)D和E,連接CD.若∠BCA=90°,AB=8,則CD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚(yáng)中國傳統(tǒng)文化,某校對(duì)全校學(xué)生進(jìn)行了古詩詞知識(shí)測(cè)試,將測(cè)試成績(jī)分為一般、良好、優(yōu)秀三個(gè)等級(jí).從中隨機(jī)抽取部分學(xué)生的測(cè)試成績(jī),繪制成如下兩幅統(tǒng)計(jì)圖,根據(jù)圖中的信息,解答下列問題:
(1)本次抽樣調(diào)查的樣本容量是 ,扇形統(tǒng)計(jì)圖中陰影部分扇形的圓心角是 度;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)根據(jù)本次抽樣調(diào)查的結(jié)果,試估計(jì)該校2000名學(xué)生中測(cè)試成績(jī)?yōu)榱己煤蛢?yōu)秀的共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)復(fù)學(xué)復(fù)課后,某校為了了解學(xué)生的疫情防控意識(shí)情況,在全校九年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查.根據(jù)調(diào)查結(jié)果,把學(xué)生的防控意識(shí)分成“A.很強(qiáng)”、“B.較強(qiáng)”、“C.一般”、“D.淡薄”四個(gè)層次,將調(diào)查的結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問題:
(1)本次共調(diào)查了 名學(xué)生,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果把疫情防控意識(shí)“很強(qiáng)或較強(qiáng)”視為合格,該校九年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)合格的學(xué)生約有多少名?
(3)在“A.很強(qiáng)”的3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請(qǐng)用列表或畫樹狀圖法求出被選中的兩人恰好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC 中,∠BAC=90°,CE 平分∠ACB,點(diǎn) D 在 CE的延長線上,連接 BD,過B作BF⊥BC交 CD 于點(diǎn) F,連接 AF,若CF=2BD ,DE:CE=5:8 , BF ,則AF的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為a,E為CD邊上一點(diǎn)(不與端點(diǎn)重合),將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG,CF.給出下列判斷:①∠EAG=45°;②若DE=a,則AG∥CF;③若E為CD的中點(diǎn),則△GFC的面積為a2;④若CF=FG,則;⑤BGDE+AFGE=a2.其中正確的是____________.(寫出所有正確判斷的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,“線上教學(xué)”為我們提供了復(fù)習(xí)的渠道.學(xué)校隨機(jī)抽取部分學(xué)生就“你是否喜歡線上教學(xué)”進(jìn)行了問卷調(diào)查,并將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如下統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
調(diào)查結(jié)果統(tǒng)計(jì)表
類別 | 非常喜歡 | 喜歡 | 一般 | 不喜歡 |
頻數(shù) | a | 70 | 20 | 10 |
頻率 | 0.5 | b | 0.15 |
調(diào)查結(jié)果扇形統(tǒng)計(jì)圖
(1)在統(tǒng)計(jì)表中,a= ;b= ;
(2)在扇形統(tǒng)計(jì)圖中,對(duì)線上教學(xué)感覺“一般”所對(duì)應(yīng)的圓心角度數(shù)為 ;
(3)已知全校共有3000名學(xué)生,試估計(jì)“喜歡”線上教學(xué)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形中,點(diǎn)在邊上,,,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在直線上E的點(diǎn)處,則的長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.
(1)直接寫出甲投放的垃圾恰好是A類的概率;
(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com