【題目】某公司計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的電腦,若購(gòu)買(mǎi)甲種電腦3臺(tái),乙種電腦2臺(tái),共需資金23000元;若購(gòu)買(mǎi)甲種電腦4臺(tái),乙種電腦3臺(tái),共需資金32000元.

1)甲、乙兩種電腦每臺(tái)的價(jià)格分別是多少元;

2)若公司計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的電腦共20臺(tái),其中甲種電腦的數(shù)量不少于乙種電腦的數(shù)量,公司至多能夠提供購(gòu)買(mǎi)電腦的資金92000元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買(mǎi)方案供這個(gè)公司選擇.

【答案】(1)甲每臺(tái)5000元,乙每臺(tái)4000元;(2)方案有三種:甲種10臺(tái),乙種10臺(tái);甲種11臺(tái),乙種9臺(tái);甲種12臺(tái),乙種8臺(tái).

【解析】

1)設(shè)甲、乙兩種電腦每臺(tái)價(jià)格分別為x元、y元,根據(jù)題意列出方程組,求出方程組的解即可;

2)設(shè)甲種電腦a元,則乙種電腦(20-a)臺(tái),根據(jù)題意列出不等式組,求出不等式組的解集即可.

解:(1)設(shè)甲、乙兩種電腦每臺(tái)價(jià)格分別為x元、y元,

,

解得:

答:甲每臺(tái)5000元,乙每臺(tái)4000元;

2)設(shè)甲種電腦a元,則乙種電腦(20a)臺(tái),

,

解得:10≤a≤12,

方案有三種:甲種10臺(tái),乙種10臺(tái)

甲種11臺(tái),乙種9臺(tái)

甲種12臺(tái),乙種8臺(tái).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某小區(qū)居民使用共享單車(chē)次數(shù)的情況,某研究小組隨機(jī)采訪(fǎng)該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車(chē)的次數(shù)統(tǒng)計(jì)如下:

使用次數(shù)

0

5

10

15

20

人數(shù)

1

1

4

3

1

1)這10位居民一周內(nèi)使用共享單車(chē)次數(shù)的中位數(shù)是   次,眾數(shù)是   次,平均數(shù)是   次.

2)若小明同學(xué)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是   .(填中位數(shù),眾數(shù)平均數(shù)

3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車(chē)的總次數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=x2bxcx軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,-3),對(duì)稱(chēng)軸是直線(xiàn)x=1,直線(xiàn)BC與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)D

(1)求拋物線(xiàn)的函數(shù)表達(dá)式;

(2)求直線(xiàn)BC的函數(shù)表達(dá)式;

(3)點(diǎn)Ey軸上一動(dòng)點(diǎn),CE的垂直平分線(xiàn)交CE于點(diǎn)F,交拋物線(xiàn)于P、Q兩點(diǎn),且點(diǎn)P在第三象限.

①當(dāng)線(xiàn)段PQ=AB時(shí),求tanCED的值;

②當(dāng)以點(diǎn)C、DE為頂點(diǎn)的三角形是直角三角形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)正方形ABCD的頂點(diǎn)A在其外側(cè)作直線(xiàn)AP,點(diǎn)B關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為E,連接BE、DE,其中DE交直線(xiàn)AP于點(diǎn)F

1)依題意補(bǔ)全圖1

2)若∠PAB30°,求∠ADF的度數(shù).

3)如圖,若45°<∠PAB90°,用等式表示線(xiàn)段AB,FE,FD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點(diǎn)D,過(guò)點(diǎn)DDEAC于點(diǎn)E

1)求證:DE是⊙O的切線(xiàn).

2)若⊙O的半徑為3cm,∠C30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,CD是弦,AB⊥CD,垂足為E,點(diǎn)P⊙O上,連接BP、PD、BC.若CD=,sinP=,則⊙O的直徑為( 。

A. 8 B. 6 C. 5 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分8分)

閱讀材料:

如圖,在四邊形ABCD中,對(duì)角線(xiàn)AC⊥BD,垂足為P.

求證:S四邊形ABCD=

證明:AC⊥BD→

∴S四邊形ABCD=S△ACD+S△ACB=

=

解答問(wèn)題:

(1)上述證明得到的性質(zhì)可敘述為_(kāi)______________________________________.

(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對(duì)角線(xiàn)AC⊥BD且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C (1,0).如圖17所示,B點(diǎn)在拋物線(xiàn)圖象上,過(guò)點(diǎn)BBDx軸,垂足為D,且B點(diǎn)橫坐標(biāo)為-3

1)求證:BDC≌△COA;

2)求BC所在直線(xiàn)的函數(shù)關(guān)系式;

3)拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使ACP是以AC為直角邊的直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,AC平分∠BCD.

(1)求證:△ABD是等邊三角形;

(2)若BD=6cm,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案