【題目】某公司計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的電腦,若購(gòu)買(mǎi)甲種電腦3臺(tái),乙種電腦2臺(tái),共需資金23000元;若購(gòu)買(mǎi)甲種電腦4臺(tái),乙種電腦3臺(tái),共需資金32000元.
(1)甲、乙兩種電腦每臺(tái)的價(jià)格分別是多少元;
(2)若公司計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的電腦共20臺(tái),其中甲種電腦的數(shù)量不少于乙種電腦的數(shù)量,公司至多能夠提供購(gòu)買(mǎi)電腦的資金92000元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買(mǎi)方案供這個(gè)公司選擇.
【答案】(1)甲每臺(tái)5000元,乙每臺(tái)4000元;(2)方案有三種:甲種10臺(tái),乙種10臺(tái);甲種11臺(tái),乙種9臺(tái);甲種12臺(tái),乙種8臺(tái).
【解析】
(1)設(shè)甲、乙兩種電腦每臺(tái)價(jià)格分別為x元、y元,根據(jù)題意列出方程組,求出方程組的解即可;
(2)設(shè)甲種電腦a元,則乙種電腦(20-a)臺(tái),根據(jù)題意列出不等式組,求出不等式組的解集即可.
解:(1)設(shè)甲、乙兩種電腦每臺(tái)價(jià)格分別為x元、y元,
,
解得:,
答:甲每臺(tái)5000元,乙每臺(tái)4000元;
(2)設(shè)甲種電腦a元,則乙種電腦(20﹣a)臺(tái),
,
解得:10≤a≤12,
方案有三種:甲種10臺(tái),乙種10臺(tái)
甲種11臺(tái),乙種9臺(tái)
甲種12臺(tái),乙種8臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某小區(qū)居民使用共享單車(chē)次數(shù)的情況,某研究小組隨機(jī)采訪(fǎng)該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車(chē)的次數(shù)統(tǒng)計(jì)如下:
使用次數(shù) | 0 | 5 | 10 | 15 | 20 |
人數(shù) | 1 | 1 | 4 | 3 | 1 |
(1)這10位居民一周內(nèi)使用共享單車(chē)次數(shù)的中位數(shù)是 次,眾數(shù)是 次,平均數(shù)是 次.
(2)若小明同學(xué)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是 .(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車(chē)的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=x2+bx+c與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,-3),對(duì)稱(chēng)軸是直線(xiàn)x=1,直線(xiàn)BC與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)D.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)求直線(xiàn)BC的函數(shù)表達(dá)式;
(3)點(diǎn)E為y軸上一動(dòng)點(diǎn),CE的垂直平分線(xiàn)交CE于點(diǎn)F,交拋物線(xiàn)于P、Q兩點(diǎn),且點(diǎn)P在第三象限.
①當(dāng)線(xiàn)段PQ=AB時(shí),求tan∠CED的值;
②當(dāng)以點(diǎn)C、D、E為頂點(diǎn)的三角形是直角三角形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)正方形ABCD的頂點(diǎn)A在其外側(cè)作直線(xiàn)AP,點(diǎn)B關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為E,連接BE、DE,其中DE交直線(xiàn)AP于點(diǎn)F.
(1)依題意補(bǔ)全圖1.
(2)若∠PAB=30°,求∠ADF的度數(shù).
(3)如圖,若45°<∠PAB<90°,用等式表示線(xiàn)段AB,FE,FD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn).
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是弦,AB⊥CD,垂足為E,點(diǎn)P在⊙O上,連接BP、PD、BC.若CD=,sinP=,則⊙O的直徑為( 。
A. 8 B. 6 C. 5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分8分)
閱讀材料:
如圖,在四邊形ABCD中,對(duì)角線(xiàn)AC⊥BD,垂足為P.
求證:S四邊形ABCD=
證明:AC⊥BD→
∴S四邊形ABCD=S△ACD+S△ACB=
=
解答問(wèn)題:
(1)上述證明得到的性質(zhì)可敘述為_(kāi)______________________________________.
(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對(duì)角線(xiàn)AC⊥BD且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C為 (-1,0).如圖17所示,B點(diǎn)在拋物線(xiàn)圖象上,過(guò)點(diǎn)B作BD⊥x軸,垂足為D,且B點(diǎn)橫坐標(biāo)為-3.
(1)求證:△BDC≌△COA;
(2)求BC所在直線(xiàn)的函數(shù)關(guān)系式;
(3)拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,AC平分∠BCD.
(1)求證:△ABD是等邊三角形;
(2)若BD=6cm,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com