【題目】如圖,點C為線段BD上的點,分別以BC,CD為邊作等邊三角形ABC和等邊三角形ECD,連接BEAC于點M,連接ADCE于點N,連接MN.試說明:(1;(2為等邊三角形.

【答案】(1)說明見解析;(2)說明見解析.

【解析】試題分析:(1)根據(jù)等邊三角形的性質得出AC=BC.CE=CD,∠ACB=∠ECD=60°,求出∠BCE=∠ACD,根據(jù)SAS證△BCE≌△ACD,推出∠1=∠2即可;(2) 由∠ACB=ECD=60°,根據(jù)平角的等于可求得∠ACE=60°,即可得∠ACB=ACE ,利用ASA判定△ACN≌△BCM,根據(jù)全等三角形的性質可得NC=MC,所以△MCN是等腰三角形,又因∠ACE=60°,根據(jù)有一個角是60°的等腰三角形為等邊三角形,即可判定△MCN是等邊三角形.

試題解析:

1∵△ABC是等邊三角形

BC=AC,ACB=60°

∵△ECD是等邊三角形,

EC=CD,ECD=60°,

∴∠ACB=ECD,

∴∠ACB+ACE=ECD +ACE

即:∠BCE=DCA .

ACDBCE,

AC=BC,DCA=DCE,EC=CD,

∴△ACD≌△BCE,

∴∠1=2.

2∵∠ACB=ECD=60°,

∴∠ACE=180°-ACB-ECD=180°-60°-60°=60°

∴∠ACB=ACE .

ACNBCM,

1=2AC=BC,ACE=ACB,

∴△ACN≌△BCMASA),

NC=MC,

∴△MCN是等腰三角形,

又∵∠ACE=60°,

∴△MCN是等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,動點、分別以的速度從點、同時出發(fā),點從點向點移動.

若點從點移動到點停止,點隨點的停止而停止移動,點分別從點、同時出發(fā),問經過多長時間、兩點之間的距離是

若點沿著移動,點、分別從點同時出發(fā),點從點移動到點停止時,點隨點的停止而停止移動,試探求經過多長時間的面積為?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABAC,CDAB,點EAC上一點,且∠ABE=∠CAD,延長BEAD于點F

1)求證:ABE≌△CAD;

2)如果∠ABC65°,∠ABE25°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:RtABC, ACB=90°,AC=BC, D是線段AB上一點,連結CD,將線段CD繞點C 逆時針旋轉90°得到線段CE,連結DE,BE.

(1)依題意補全圖形;

(2)用含的代數(shù)式表示

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AD平分∠BAC,

(1)求作⊙O,圓心OAD的中垂線與AB的交點,OD為半徑.(尺規(guī)作圖,不寫作法,保留痕跡)

(2)求證:BC是⊙O切線.

(3)若BD=5,DC=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰RtABC中,BAC90°,ABAC,A、點B分別是y軸、x軸上兩個動點,直角邊ACx軸于點D,斜邊BCy軸于點E;

1)如圖(1),已知C點的橫坐標為-1,直接寫出點A的坐標;

2)如圖(2), 當?shù)妊?/span>RtABC運動到使點D恰為AC中點時,連接DE,求證:ADBCDE;

(3)如圖(3), 若點Ax軸上,且A-40),點By軸的正半軸上運動時,分別以OB、AB為直角邊在第一、二象限作等腰直角BOD和等腰直角ABC,連結CDy軸于點P,問當點By軸的正半軸上運動時,BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點CAB中點,CDBECDBE

1)求證:△ACD≌△CBE;

2)若∠D35°,求∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】( 1)計算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2

(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOBAB于點C,點D為線段AB上一點,過點DDEOCy軸于點E,已知AO=m,BO=n,且m、n滿足n212n+36+|n2m|=0

1)求A、B兩點的坐標;

2)若點DAB中點,延長DEx軸于點F,在ED的延長線上取點G,使DG=DF,連接BG

BGy軸的位置關系怎樣?說明理由; ②求OF的長;

3)如圖2,若點F的坐標為(10,10),Ey軸的正半軸上一動點,P是直線AB上一點,且P的橫坐標為6,是否存在點E使△EFP為等腰直角三角形?若存在,求出點E的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案