【題目】如圖,點C為線段BD上的點,分別以BC,CD為邊作等邊三角形ABC和等邊三角形ECD,連接BE交AC于點M,連接AD交CE于點N,連接MN.試說明:(1);(2)為等邊三角形.
【答案】(1)說明見解析;(2)說明見解析.
【解析】試題分析:(1)根據(jù)等邊三角形的性質得出AC=BC.CE=CD,∠ACB=∠ECD=60°,求出∠BCE=∠ACD,根據(jù)SAS證△BCE≌△ACD,推出∠1=∠2即可;(2) 由∠ACB=∠ECD=60°,根據(jù)平角的等于可求得∠ACE=60°,即可得∠ACB=∠ACE ,利用ASA判定△ACN≌△BCM,根據(jù)全等三角形的性質可得NC=MC,所以△MCN是等腰三角形,又因∠ACE=60°,根據(jù)有一個角是60°的等腰三角形為等邊三角形,即可判定△MCN是等邊三角形.
試題解析:
(1)∵△ABC是等邊三角形,
∴BC=AC,∠ACB=60° ;
∵△ECD是等邊三角形,
∴EC=CD,∠ECD=60°,
∴∠ACB=∠ECD,
∴∠ACB+∠ACE=∠ECD +∠ACE,
即:∠BCE=∠DCA .
在△ACD和△BCE中,
AC=BC,∠DCA=∠DCE,EC=CD,
∴△ACD≌△BCE,
∴∠1=∠2.
(2)∵∠ACB=∠ECD=60°,
∴∠ACE=180°-∠ACB-∠ECD=180°-60°-60°=60°,
∴∠ACB=∠ACE .
在△ACN和△BCM中,
∠1=∠2,AC=BC,∠ACE=∠ACB,
∴△ACN≌△BCM(ASA),
∴NC=MC,
∴△MCN是等腰三角形,
又∵∠ACE=60°,
∴△MCN是等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,動點、分別以、的速度從點、同時出發(fā),點從點向點移動.
若點從點移動到點停止,點隨點的停止而停止移動,點、分別從點、同時出發(fā),問經過多長時間、兩點之間的距離是?
若點沿著移動,點、分別從點、同時出發(fā),點從點移動到點停止時,點隨點的停止而停止移動,試探求經過多長時間的面積為?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,CD∥AB,點E是AC上一點,且∠ABE=∠CAD,延長BE交AD于點F.
(1)求證:△ABE≌△CAD;
(2)如果∠ABC=65°,∠ABE=25°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在Rt△ABC中, ∠ACB=90°,AC=BC, D是線段AB上一點,連結CD,將線段CD繞點C 逆時針旋轉90°得到線段CE,連結DE,BE.
(1)依題意補全圖形;
(2)若用含的代數(shù)式表示
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,
(1)求作⊙O,圓心O是AD的中垂線與AB的交點,OD為半徑.(尺規(guī)作圖,不寫作法,保留痕跡)
(2)求證:BC是⊙O切線.
(3)若BD=5,DC=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點A、點B分別是y軸、x軸上兩個動點,直角邊AC交x軸于點D,斜邊BC交y軸于點E;
(1)如圖(1),已知C點的橫坐標為-1,直接寫出點A的坐標;
(2)如圖(2), 當?shù)妊?/span>Rt△ABC運動到使點D恰為AC中點時,連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點A在x軸上,且A(-4,0),點B在y軸的正半軸上運動時,分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結CD交y軸于點P,問當點B在y軸的正半軸上運動時,BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點C為AB中點,CD=BE,CD∥BE.
(1)求證:△ACD≌△CBE;
(2)若∠D=35°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】( 1)計算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOB交AB于點C,點D為線段AB上一點,過點D作DE∥OC交y軸于點E,已知AO=m,BO=n,且m、n滿足n2﹣12n+36+|n﹣2m|=0.
(1)求A、B兩點的坐標;
(2)若點D為AB中點,延長DE交x軸于點F,在ED的延長線上取點G,使DG=DF,連接BG.
①BG與y軸的位置關系怎樣?說明理由; ②求OF的長;
(3)如圖2,若點F的坐標為(10,10),E是y軸的正半軸上一動點,P是直線AB上一點,且P的橫坐標為6,是否存在點E使△EFP為等腰直角三角形?若存在,求出點E的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com