【題目】如圖,ABAC,CDAB,點EAC上一點,且∠ABE=∠CAD,延長BEAD于點F

1)求證:ABE≌△CAD;

2)如果∠ABC65°,∠ABE25°,求∠D的度數(shù).

【答案】1)見解析;(2105°

【解析】

1)根據(jù)ASA可證明ABE≌△CAD;

2)求出∠BAC50°,則求出∠BAD75°,可求出答案.

1)證明:∵CDAB,

∴∠BAE=∠ACD,

∵∠ABE=∠CAD,ABAC

∴△ABE≌△CADASA);

2)解:∵ABAC,

∴∠ABC=∠ACB65°

∴∠BAC180°﹣∠ABC﹣∠ACB180°65°65°50°,

又∵∠ABE=∠CAD25°,

∴∠BAD=∠BAC+CAD50°+25°75°

ABCD,

∴∠D180°﹣∠BAD180°75°105°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB8,將紙片折疊,使頂點B落在邊AD上的E點處,折痕的一端G點在邊BC上,折痕的另一端FAD邊上且BG10時.

1)證明:EFEG

2)求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB是一鋼架,∠AOB15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FGGH,添的鋼管長度都與OE相等,則最多能添加這樣的鋼管_____根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】京沈高速鐵路赤峰至喀左段正在建設(shè)中,甲、乙兩個工程隊計劃參與一項工程建設(shè),甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.

(1)若乙隊單獨施工,需要多少天才能完成該項工程?

(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個商人要建一個矩形的倉庫,倉庫的兩邊是住房墻,另外兩邊用長的建筑材料圍成,且倉庫的面積為

求這矩形倉庫的長;

有規(guī)格為(單位:)的地板磚單價分別為/塊和/塊,若只選其中一種地板磚都恰好能鋪滿倉庫的矩形地面(不計縫隙),用一種規(guī)格的地板磚費用較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABCD中,AB=6,BC=2,直線l是長方形ABCD的一條對稱軸,且分別與AD,BC交于點E,F,若直線l上的動點P,使得△PAB和△PBC均為等腰三角形.則動點P的個數(shù)有_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為線段BD上的點,分別以BCCD為邊作等邊三角形ABC和等邊三角形ECD,連接BEAC于點M,連接ADCE于點N,連接MN.試說明:(1;(2為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,∠C>∠B,AD,AE分別是△ABC的高和角平分線.

(1)若∠B=30°,∠C=50°,求∠DAE的度數(shù);

(2)∠DAE與∠C-∠B有何關(guān)系?

查看答案和解析>>

同步練習冊答案