【題目】如圖已知拋物線y=﹣x2+(1﹣m)x﹣m2+12交x軸于點(diǎn)A,交y軸于點(diǎn)B(0,3),頂點(diǎn)C位于第二象限,連接AB,AC,BC.
(1)求拋物線的解析式;
(2)在x軸上是否存在點(diǎn)P,使得△PAB的面積等于△ABC的面積?如果存在,求出點(diǎn)P的坐標(biāo).
(3)將△ABC沿x軸向右移動(dòng)t個(gè)單位長(zhǎng)度(0<t<1)時(shí),平移后△ABC和△ABO重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系.
【答案】(1)y=﹣x2﹣2x+3;(2)點(diǎn)P的坐標(biāo)為(﹣1,0)或(﹣5,0);(3)
【解析】
(1)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出m的值,結(jié)合拋物線的頂點(diǎn)在第二象限可得出m>1,進(jìn)而可確定m的值,再將其代入拋物線解析式中即可得出結(jié)論;
(2)過(guò)點(diǎn)C作CD⊥x軸,垂足為點(diǎn)D,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及配方法,可求出點(diǎn)A,C的坐標(biāo),利用分割圖形求面積法可求出△ABC的面積,再由三角形的面積公式結(jié)合S△PAB=S△ABC可求出AP的長(zhǎng),結(jié)合點(diǎn)A的坐標(biāo),即可求出點(diǎn)P的坐標(biāo);
(3)設(shè)△ABC平移后得到△A′B′C′,A′B′與y軸交于點(diǎn)M,A′C′交AB于點(diǎn)N,根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法可求出線段AB,AC所在直線的解析式,結(jié)合平移的性質(zhì)可得出線段A′B′,A′C′所在直線的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)M,N的坐標(biāo),由三角形、梯形的面積公式結(jié)合S=S△AOB﹣S△AA′N﹣S△AA′M,即可得出S關(guān)于t的函數(shù)關(guān)系式.
(1)∵拋物線y=﹣x2+(1﹣m)x﹣m2+12交y軸于點(diǎn)B(0,3),
∴﹣m2+12=3,
∴m=±3.
又∵拋物線的頂點(diǎn)C位于第二象限,
∴﹣ ,
∴m>1,
∴m=3,
∴拋物線的解析式為y=﹣x2﹣2x+3.
(2)過(guò)點(diǎn)C作CD⊥x軸,垂足為點(diǎn)D,如圖1所示.
當(dāng)y=0時(shí),﹣x2﹣2x+3=0,
解得:x1=﹣3,x2=1,
∴點(diǎn)A的坐標(biāo)為(﹣3,0).
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴點(diǎn)C的坐標(biāo)為(﹣1,4),點(diǎn)D的坐標(biāo)為(﹣1,0),
∴S△ABC=S△ACD+S梯形CDOB﹣S△AOB,
=ADCD+(OB+CD)OD﹣OAOB,
=×2×4+×(3+4)×1﹣×3×3,
=3.
∵S△PAB=S△ABC,
∴APOB=3,
∴AP=2,
∴點(diǎn)P的坐標(biāo)為(﹣1,0)或(﹣5,0).
(3)設(shè)△ABC平移后得到△A′B′C′,A′B′與y軸交于點(diǎn)M,A′C′交AB于點(diǎn)N,如圖2所示.
設(shè)線段AB所在直線的解析式為y=kx+b(k≠0),
將A(﹣3,0),B(0,3)代入y=kx+b,得:
,解得: ,
∴線段AB所在直線的解析式為y=x+3.
同理,可得出線段AC所在直線的解析式為y=2x+6.
∵將△ABC沿x軸向右移動(dòng)t個(gè)單位長(zhǎng)度(0<t<1)得到△A′B′C′,
∴點(diǎn)A′的坐標(biāo)為(t﹣3,0),線段A′B′所在直線的解析式為y=x+3﹣t(0<t<1),線段A′C′所在直線的解析式為y=2x+6﹣2t(0<t<1).
當(dāng)x=0時(shí),y=x+3﹣t=3﹣t,
∴點(diǎn)M的坐標(biāo)為(0,3﹣t).
將y=x+3代入y=2x+6﹣2t,整理,得:x+3﹣2t=0,
解得:x=2t﹣3,
∴點(diǎn)N的坐標(biāo)為(2t﹣3,2t),
∴S=S△AOB﹣S△AA′N﹣S△AA′M,
=OAOB﹣AA′yA′﹣OA′OM,
=×3×3﹣t2t﹣(3﹣t)(3﹣t),
=﹣t2+3t.
∴S與t之間的函數(shù)關(guān)系式為S=﹣ t2+3t(0<t<1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)F在AD上,射線BF交AC于點(diǎn)G,交CD的延長(zhǎng)線于點(diǎn)E,則下列等式正確的為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系XOY中,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣2,0),B(8,0).
(1)求拋物線的解析式;
(2)點(diǎn)C是拋物線與y軸的交點(diǎn),連接BC,設(shè)點(diǎn)P是拋物線上在第一象限內(nèi)的點(diǎn),PD⊥BC,垂足為點(diǎn)D.
①是否存在點(diǎn)P,使線段PD的長(zhǎng)度最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
②當(dāng)△PDC與△COA相似時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)泰山文化,某校舉辦了“泰山詩(shī)文大賽”活動(dòng),從中隨機(jī)抽取部分學(xué)生的比賽成績(jī),根據(jù)成績(jī)(高成都績(jī)于50分),繪制了如下的統(tǒng)計(jì)圖表(不完整);
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)求出、的值;
(2)計(jì)算扇形統(tǒng)計(jì)圖中“第5組”所在扇形圓心角的度數(shù);
(3)若該校共有1800名學(xué)生,那么成績(jī)高于80分的共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點(diǎn)B,
點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若△ADE
的面積為3,則k的值為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩個(gè)等腰Rt△ADE、Rt△ABC如圖放置在一起,其中∠DAE=∠ABC=90°.點(diǎn)E在AB上,AC與DE交于點(diǎn)H,連接BH、CE,且∠BCE=15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=;④;正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(1,0)、B(4,0)、C(0,3)三點(diǎn).
(1)求該拋物線的解析式;
(2)如圖,在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使得四邊形PAOC的周長(zhǎng)最小?若存在,求出四邊形PAOC周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,點(diǎn)Q是線段OB上一動(dòng)點(diǎn),當(dāng)△BPQ與△BAC相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點(diǎn),C是OB的中點(diǎn),D是AB上一點(diǎn),四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)在函數(shù)的圖象上,,邊在軸上,點(diǎn)為斜邊的中點(diǎn),連續(xù)并延長(zhǎng)交軸于點(diǎn),連結(jié),若的面積為,則的值為 ( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com