【題目】如圖,在矩形ABCD中,點(diǎn)F在AD上,射線(xiàn)BF交AC于點(diǎn)G,交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,則下列等式正確的為( )
A. B. C. D.
【答案】B
【解析】
由矩形ABCD的性質(zhì)得到AD∥BC,AB∥CD,證明△ABF與△DEF相似,△AFG與△CBG相似,△ABG與△CEG相似,△EFD與△EBC相似即可分別判斷各選項(xiàng)的對(duì)與錯(cuò)
∵四邊形ABCD為矩形,
∴AD∥BC,AB∥CD
∴△ABF∽△DEF,△AFG∽△CBG,△EFD∽△EBC,△ABG∽△CEG,
∴△ABF∽△DEF
∴,故A錯(cuò)誤
∵△AFG∽△CBG,△ABG∽△CBG
∴
∴ ,故B正確
∵△AFG∽△CBG
∴ 故C錯(cuò)誤
∵△EFD∽△EBC
∴ ,故D錯(cuò)誤
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】天虹超市購(gòu)進(jìn)甲、乙兩種水果,已知 1 千克甲種水果的進(jìn)價(jià)比 1 千克乙種水果的進(jìn)價(jià)多 4 元,購(gòu)進(jìn) 2
千克甲種水果與 3 千克乙種水果共需 28 元.
求甲種水果的進(jìn)價(jià)為每千克多少元?
(2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),甲種水果每天銷(xiāo)售量 y(千克)與售價(jià) m(元/千克)之間滿(mǎn)足如圖所示的函數(shù)關(guān)系,求 y
與 m 之間的函數(shù)關(guān)系;
(3)在(2)的條件下,為減少庫(kù)存,每天甲種水果的銷(xiāo)售量不能低于 16 千克,當(dāng)甲種水果的售價(jià)定為多少元時(shí),才能使每天銷(xiāo)售甲種水果的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在BC上,點(diǎn)F在CD上,且CF=BE,AE與BF交于G點(diǎn).
(1)如圖1,求證:①AE=BF,②AE⊥BF.
(2)連接CG并延長(zhǎng)交AB于點(diǎn)H,
①若點(diǎn)E為BC的中點(diǎn)(如圖2),求BH的長(zhǎng);
②若點(diǎn)E在BC的邊上滑動(dòng)(不與B、C重合),當(dāng)CG取得最小值時(shí),求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,我們將相同的兩塊含30°角的直角三角板Rt△DEF與Rt△ABC疊合,使DE在AB上,DE過(guò)點(diǎn)C,已知AC=DE=6.
(1)將圖1中的△DEF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)(DF與AB不重合),使邊DF、DE分別交AC、BC于點(diǎn)P、Q,如圖2.
①求證:△CQD∽△APD;②連接PQ,設(shè)AP=x,求面積S△PCQ關(guān)于x的函數(shù)關(guān)系式;
(2)將圖1中的△DEF向左平移(點(diǎn)A、D不重合),使邊FD、FE分別交AC、BC于點(diǎn)M、N設(shè)AM=t,如圖3.
①判斷△BEN是什么三角形?并用含t的代數(shù)式表示邊BE和BN;②連接MN,求面積S△MCN關(guān)于t的函數(shù)關(guān)系式;
(3)在旋轉(zhuǎn)△DEF的過(guò)程中,試探求AC上是否存在點(diǎn)P,使得S△PCQ等于平移所得S△MCN的最大值?說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)B 坐標(biāo)為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)點(diǎn)E是x軸上一點(diǎn),且△AOE是等腰三角形,請(qǐng)直接寫(xiě)出所有符合條件的E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)交軸于,兩點(diǎn),交軸于點(diǎn).
(1)如圖,求拋物線(xiàn)的解析式;
(2)如圖,點(diǎn)是第一象限拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),連接交軸于點(diǎn),過(guò)點(diǎn)作軸交拋物線(xiàn)于點(diǎn),交軸于點(diǎn),連接、、,設(shè)點(diǎn)的橫坐標(biāo)為,四邊形的面積為,求與之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍);
(3)如圖,在(2) 的條件下,點(diǎn)是中點(diǎn),過(guò)點(diǎn)作的垂線(xiàn)與過(guò)點(diǎn)平行于軸的直線(xiàn)交于點(diǎn), ,點(diǎn)為第一象限內(nèi)直線(xiàn) 下方拋物線(xiàn)上一點(diǎn),連接交軸于點(diǎn),點(diǎn)是上一點(diǎn),連接、,若,,求點(diǎn)坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”期間,小張把容積為60升的油箱加滿(mǎn)后自駕出行,行駛一段路程后進(jìn)入服務(wù)區(qū)停車(chē)休息,休息后,小張離開(kāi)服務(wù)區(qū)繼續(xù)前行,為能順利到達(dá)目的地,小張需在相距S千米的加油站加油.若小張從出發(fā)點(diǎn)到服務(wù)區(qū)休息點(diǎn)行駛的路程為200千米,且這期間平均油耗為每千米0.12升.
(1)求小張離開(kāi)服務(wù)區(qū)休息點(diǎn)時(shí),油箱內(nèi)還有多少升汽油?
(2)記小張從離開(kāi)服務(wù)區(qū)休息點(diǎn)到進(jìn)入加油站加油期間的平均油耗為每千米a升,請(qǐng)寫(xiě)出S與a的函數(shù)關(guān)系式;若0.08≤a≤0.1,求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校7年級(jí)的學(xué)生從學(xué)校O點(diǎn)出發(fā),要到某地P處進(jìn)行探險(xiǎn)活動(dòng),他們先向正西方向走8km到A處,又往正南方向走4km到B處,又折向正東方向走6km到C處,再折向正北方向走8km到D處,最后又往正東方向走4km才到探險(xiǎn)地P;取點(diǎn)O為原點(diǎn),取點(diǎn)O的正東方向?yàn)閤軸的正方向,取點(diǎn)O的正北方向?yàn)閥軸的正方向,以2km為一個(gè)單位長(zhǎng)度建立平面直角坐標(biāo)系.
(1)在平面直角坐標(biāo)系中畫(huà)出探險(xiǎn)路線(xiàn)圖;
(2)分別寫(xiě)出A、B、C、D、P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知拋物線(xiàn)y=﹣x2+(1﹣m)x﹣m2+12交x軸于點(diǎn)A,交y軸于點(diǎn)B(0,3),頂點(diǎn)C位于第二象限,連接AB,AC,BC.
(1)求拋物線(xiàn)的解析式;
(2)在x軸上是否存在點(diǎn)P,使得△PAB的面積等于△ABC的面積?如果存在,求出點(diǎn)P的坐標(biāo).
(3)將△ABC沿x軸向右移動(dòng)t個(gè)單位長(zhǎng)度(0<t<1)時(shí),平移后△ABC和△ABO重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com