如圖,E是長(zhǎng)方形ABCD的邊AB上的點(diǎn),EF⊥DE交BC于點(diǎn)F
(1)求證:△ADE∽△BEF;
(2)設(shè)H是ED上一點(diǎn),以EH為直徑作⊙O,DF與⊙O相切于點(diǎn)G,若DH=OH=3,求圖中陰影部分的面積(結(jié)果保留到小數(shù)點(diǎn)后面第一位,≈1.73,π≈3.14).
(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠B=90°.
∵EF⊥DE,
∴∠DEF=90°.
∴∠AED=90°﹣∠BEF=∠EFB.
∵∠A=∠B,∠AED=∠EFB,
∴△ADE∽△BEF.
(2)解:∵DF與⊙O相切于點(diǎn)G,
∴OG⊥DG.
∴∠DGO=90°.
∵DH=OH=OG,
∴sin∠ODG==.
∴∠ODG=30°.
∴∠GOE=120°.
∴S扇形OEG==3π.
在Rt△DGO中,
cos∠ODG===.
∴DG=3.
在Rt△DEF中,
tan∠EDF===.
∴EF=3.
∴S△DEF=DE•EF=×9×3=,
S△DGO=DG•GO=×3×3=.
∴S陰影=S△DEF﹣S△DGO﹣S扇形OEG
=﹣﹣3π
=.9﹣3π
≈9×1.73﹣3×3.14
=6.15
≈6.2
∴圖中陰影部分的面積約為6.2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
南寧東高鐵火車站位于南寧市青秀區(qū)鳳嶺北路,火車站總建筑面積約為267000平方米,其中數(shù)據(jù)267000用科學(xué)記數(shù)法表示為 ( )
(A)26.7×10 (B)2.67×10 (C)2.67×10 (D)0.267×10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣一個(gè)問題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點(diǎn)C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小俊的證明思路是:如圖2,過點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
【變式探究】如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;
請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:
【結(jié)論運(yùn)用】如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
【遷移拓展】圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,M,N兩點(diǎn)在數(shù)軸上表示的數(shù)分別是m,n,則下列式子中成立的是( 。
| A. | m+n<0 | B. | ﹣m<﹣n | C. | |m|﹣|n|>0 | D. | 2+m<2+n |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com