【題目】AB∥CD,直線a交AB、CD分別于點E、F,點M在EF上,P是直線CD上的一個動點,(點P不與F重合)
(1)當點P在射線FC上移動時,∠FMP+∠FPM =∠AEF成立嗎?請說明理由。
(2)當點P在射線FD上移動時,∠FMP+∠FPM與∠AEF有什么關系?并說明你的理由
【答案】(1)成立。…………………………………………………………2分
理由:因為AB∥CD
所以∠AEF十∠EFC=180° (兩直線平行同旁內(nèi)角互補)
因為∠FMP+∠FPM+∠EFC=180° (三角形內(nèi)角和定理)
所以∠FMP+∠FPM=∠AEF(等量代換)……………………………………………6分
(2)∠FMP+∠FPM與∠AEF互補(∠FMP+∠FPM+∠AEF=180°)……………8分
理由:因為AB∥CD
所以∠AEF=∠EFD(兩直線平行,內(nèi)錯角相等)
因為∠FMP+么FPM+∠EFD=180°(三角形內(nèi)角和定理)
所以∠FMP+∠FPM+∠AEF=180°(等量代換)………………………………l2
【解析】略
科目:初中數(shù)學 來源: 題型:
【題目】定義一種新運算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.
(1)求(﹣3)⊕2的值;
(2)若(x﹣3)⊕(x+1)=1,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列式子去括號正確的是( 。
A. -(2a+3b-5c)=-2a-3b+5c B. 5a+2(3b-3)=5a+6b-3
C. 3a-(b-5)=3a-b-5 D. -3(3x-y+1)=-9x+3y-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在地表以下不太深的地方,溫度y(℃)與所處的深度x(km)之間的關系可以近似用關系式y=35x+20表示,這個關系式符合的數(shù)學模型是( )
A. 正比例函數(shù) B. 反比例函數(shù) C. 二次函數(shù) D. 一次函數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對應點C′的坐標為(4,1)
(1)A′、B′兩點的坐標分別為A′ 、B′ ;
(2)作出△ABC平移之后的圖形△A′B′C′;
(3)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=AC=2,以BC的中點O為圓心的圓弧分別與AB、AC相切于點D、E,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】制造廠的某車間生產(chǎn)圓形鐵片和長方形鐵片,如圖,兩個圓形鐵片和一個長方形鐵片可以制造成一個油桶.已知該車間有工人42人,每個工人平均每小時可以生產(chǎn)圓形鐵片120片或者長方形鐵片80片.問安排生產(chǎn)圓形鐵片和長方形鐵片的工人各為多少人時,才能使生產(chǎn)的鐵片恰好配套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(a,1)、B(﹣1,b)都在函數(shù)(x<0)的圖象上,點P、Q分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com