【題目】如圖,在等邊△ABC中,點(diǎn)E,F分別是邊AB,BC上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且始終保持AE=BF,連接AF,CE相交于點(diǎn)P過點(diǎn)A作直線m∥BC,過點(diǎn)C作直線n∥AB,直線m,n相交于點(diǎn)D,連接PD交AC于點(diǎn)G,在點(diǎn)E,F的運(yùn)動(dòng)過程中,若=,則的值為_____.
【答案】,
【解析】
作DH⊥AC于H,由“SAS”可證△ABF≌△CAE,可得∠BAF=∠ACE,可求∠CPF=60°,通過證明A,P,C,D四點(diǎn)共圓,可得∠ACP=∠ADP,∠APD=∠ACD=60°,通過證明△DAG∽△DPA,可得DA2=DGDP=20k2,可求DA的長,由勾股定理可求GH的長,即可求解.
解:作DH⊥AC于H,
∵△ABC是等邊三角形,
∴AC=AB,∠B=∠CAE=60°,且AE=BF,
∴△ABF≌△CAE(SAS),
∴∠BAF=∠ACE,
∴∠CPF=∠ACP+∠CAP=∠BAF+∠CAP=∠CAB=60°,
∵m∥BC,n∥AB,
∴∠DAC=∠ACB=60°,∠ACD=∠BAC=60°,
∴△ADC是等邊三角形,
∴∠ADC=60°,
∵∠APC+∠ADC=180°,
∴A,P,C,D四點(diǎn)共圓,
∴∠ACP=∠ADP,∠APD=∠ACD=60°
∵
∴可以假設(shè)PG=k,DG=4k,
∵∠ADG=∠ADP,∠DAG=∠DPA=60°,
∴△DAG∽△DPA,
∴DA2=DGDP=20k2,
∵DA>0
∴
∴
在Rt△DGH中,
∴
∴
當(dāng)點(diǎn)G在點(diǎn)H下方時(shí),根據(jù)對(duì)稱性可得:
故答案為:,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸是的拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),
求拋物線的函數(shù)表達(dá)式;
若點(diǎn)是直線下方的拋物線上的動(dòng)點(diǎn),求的面積的最大值;
若點(diǎn)在拋物線對(duì)稱軸左側(cè)的拋物線上運(yùn)動(dòng),過點(diǎn)作鈾于點(diǎn),交直線于點(diǎn),且,求點(diǎn)的坐標(biāo);
在對(duì)稱軸上是否存在一點(diǎn),使的周長最小,若存在,請(qǐng)求出點(diǎn)的坐標(biāo)和周長的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式kx+b>的解集;
(3)過點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是垂直于水平面的一座大樓,離大樓20米(BC=20米)遠(yuǎn)的地方有一段斜坡CD(坡度為1:0.75),且坡長CD=10米,某日下午一個(gè)時(shí)刻,在太陽光照射下,大樓的影子落在了水平面BC,斜坡CD,以及坡頂上的水平面DE處(A、B、C、D、E均在同一個(gè)平面內(nèi)).若DE=4米,且此時(shí)太陽光與水平面所夾銳角為24°(∠AED=24°),試求出大樓AB的高.(其中,sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在基地參加社會(huì)活動(dòng)中,帶隊(duì)老師考問學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留有一個(gè)寬為3米的出入口,如圖所示.如何設(shè)計(jì)才能使園地的面積最大?下面是兩位同學(xué)爭議的情境:小軍:把它圍成一個(gè)正方形,這樣的面積一定最大.小英:不對(duì)啦!面積最大的不是正方形.請(qǐng)根據(jù)上面信息,解決問題:
(1)設(shè)米().
① 米(用含的代數(shù)式表示);
②的取值范圍是 ;
(2)請(qǐng)你判斷誰的說法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】劉徽,公元3世紀(jì)人,是中國歷史上最杰出的數(shù)學(xué)家之一.《九章算術(shù)注》和《海島算經(jīng)》是他留給后世最寶貴的數(shù)學(xué)遺產(chǎn).《海島算經(jīng)》第一個(gè)問題的大意是:如圖,要測量海島上一座山峰A的高度AH,立兩根高3丈的標(biāo)桿BC和DE,兩桿之間的距離BD=1000步,點(diǎn)D、B、H成一線,從B處退行123步到點(diǎn)F處,人的眼睛貼著地面觀察點(diǎn)A,點(diǎn)A、C、F也成一線,從DE退行127步到點(diǎn)G處,從G觀察A點(diǎn),A,E,G三點(diǎn)也成一線,試計(jì)算山峰的高度AH及BH的長(這里古制1步=6尺,1里=180丈=1800尺=300步,結(jié)果用步來表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為正方形ABCD對(duì)角線上一點(diǎn),以點(diǎn)O為圓心,OA長為半徑的
⊙ O與BC相切于點(diǎn)E.
(1)求證:CD是⊙ O的切線;
(2)若正方形ABCD的邊長為10,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=3,AC=4,△ADE的頂點(diǎn)D在BC上運(yùn)動(dòng),且∠DAE=90°,∠ADE=∠B,F為線段DE的中點(diǎn),連接CF,在點(diǎn)D運(yùn)動(dòng)過程中,線段CF長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,.
(Ⅰ)如圖Ⅰ,為邊上一點(diǎn)(不與點(diǎn)重合),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接.
求證:(1);
(2).
(Ⅱ)如圖Ⅱ,為外一點(diǎn),且,仍將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接,.
(1)的結(jié)論是否仍然成立?并請(qǐng)你說明理由;
(2)若,,求的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com