【題目】小明從如圖所示的二次函數(shù)的圖象中,觀察得出了下面五條信息:
①,②,③,④,⑤,
你認(rèn)為其中正確信息的個(gè)數(shù)有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
【答案】C
【解析】
由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解:①由二次函數(shù)y=ax2+bx+c的圖象開口向上可知a>0,圖象與y軸交點(diǎn)在負(fù)半軸,c<0,正確;
②由圖象可知x=-1時(shí),y=a-b+c>0,正確;
③對(duì)稱軸x=->0,a>0,b<0,abc>0,正確;
④對(duì)稱軸x=-=,-3b=2a,2a-3b=-6b,錯(cuò)誤;
⑤由圖象可知x=2時(shí),y=4a+2b+c>0,正確.
所以①②③⑤四項(xiàng)正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長(zhǎng)為1的小正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上.
(1)B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)坐標(biāo)為 ;
(2)將△AOB向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度得到△A1O1B1,請(qǐng)畫出△A1O1B1;
(3)在(2)的條件下,△AOB邊AB上有一點(diǎn)P的坐標(biāo)為(a,b),則平移后對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式及其展開式
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
…
根據(jù)下圖,猜想:
(a+b)5=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對(duì)全校3000名學(xué)生本學(xué)期參加藝術(shù)學(xué)習(xí)活動(dòng)的情況進(jìn)行評(píng)價(jià),其中甲班學(xué)生本學(xué)期參觀美術(shù)館的次數(shù)以及藝術(shù)評(píng)價(jià)等級(jí)和藝術(shù)賦分的統(tǒng)計(jì)情況,如下表所示:
圖(1) 圖(2)
(1)甲班學(xué)生總數(shù)為______________人,表格中的值為_____________;
(2)甲班學(xué)生藝術(shù)賦分的平均分是______________分;
(3)根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)全校3000名學(xué)生藝術(shù)評(píng)價(jià)等級(jí)為級(jí)的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問題:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適于岸齊,問水深、葭長(zhǎng)各幾何?”這道題的意思是說:“有一個(gè)邊長(zhǎng)為10尺的正方形水池,在水池的正中央長(zhǎng)著一根蘆葦,蘆葦露出水面1尺,若將蘆葦拉到水池一邊的中點(diǎn)處,蘆葦?shù)捻敹饲『玫竭_(dá)池邊的水面,問水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?若設(shè)水的深度為x尺,則可以得到方程_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
若,,且二次函數(shù)的圖象經(jīng)過點(diǎn),求的值;
若,,,且二次函數(shù)的圖象經(jīng)過點(diǎn),求證:;
若,,且二次函數(shù)的圖象經(jīng)過點(diǎn),試問當(dāng)自變量時(shí),二次函數(shù)所對(duì)應(yīng)的函數(shù)值是否大于?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,點(diǎn)O是AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于E,交∠BCA的外角平分線于F.
(1)請(qǐng)猜測(cè)OE與OF的大小關(guān)系,并說明你的理由;
(2)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?寫出推理過程;
(3)點(diǎn)O運(yùn)動(dòng)到何處且△ABC滿足什么條件時(shí),四邊形AECF是正方形?(寫出結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是關(guān)于x的一次函數(shù),下表列出了這個(gè)函數(shù)部分的對(duì)應(yīng)值:
(1)求這個(gè)一次函數(shù)的表達(dá)式.
(2)求m,n的值.
(3)已知點(diǎn)和點(diǎn)在該一次函數(shù)圖象上,設(shè),判斷正比例函數(shù)的圖象是否有可能經(jīng)過第一象限,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC 中,AB=AC,點(diǎn) D 在 AB 邊上,點(diǎn) E 在 AC 的延長(zhǎng)線上,且 CE=BD, 連接 DE 交 BC 于點(diǎn) F.
⑴求證:EF=DF;
⑵如圖2,過點(diǎn) D 作 DG⊥BC,垂足為 G,求證:BC=2FG.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com