【題目】已知 ABC(如圖1),按圖2所示的尺規(guī)作圖痕跡不需借助三角形全等就能推出四邊形ABCD是平行四邊形的依據(jù)是(

A. 兩組對(duì)邊分別平行的四邊形是平行四邊形 B. 兩組對(duì)邊分別相等的四邊形是平行四邊形

C. 一組對(duì)邊平行且相等的四邊形是平行四邊形 D. 對(duì)角線互相平分的四邊形是平行四邊形

【答案】D

【解析】觀察圖形,可知先作線段AC的垂直平分線MN,再以O(shè)為圓心OB為半徑畫弧,交射線BO于點(diǎn)D,可證得OA=OC,OB=OD,根據(jù)對(duì)角線互相平分的四邊形是平行四邊形,可證得結(jié)論,即可得出答案.

根據(jù)作圖可知,先作線段AC的垂直平分線MN,交AC于點(diǎn)O

∴OA=OC,

再以O(shè)為圓心OB為半徑畫弧,交射線BO于點(diǎn)D

∴OB=OD

∴四邊形ABCD是平行四邊形(對(duì)角線互相平分的四邊形是平行四邊形)

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,ABDC,AB=AD,對(duì)角線ACBD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)CCEDBAB的延長(zhǎng)線于點(diǎn)E,連接OE

1)求證:四邊形ABCD是菱形;

2)若∠DAB=60°,且AB=4,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)習(xí)小組在學(xué)習(xí)了函數(shù)及函數(shù)圖象的知識(shí)后,想利用此知識(shí)來(lái)探究周長(zhǎng)一定的矩形其邊長(zhǎng)分別為多少時(shí)面積最大. 請(qǐng)將他們的探究過(guò)程補(bǔ)充完整.

(1)列函數(shù)表達(dá)式:若矩形的周長(zhǎng)為8,設(shè)矩形的一邊長(zhǎng)為x,面積為y,則有y=____________;

(2)上述函數(shù)表達(dá)式中,自變量x的取值范圍是____________;

(3)列表:

x

0.5

1

1.5

2

2.5

3

3.5

y

1.75

3

3.75

4

3.75

3

m

寫出m=____________;

(4)畫圖:在平面直角坐標(biāo)系中已描出了上表中部分各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),請(qǐng)你畫出該函數(shù)的圖象;

(5)結(jié)合圖象可得,x=____________時(shí),矩形的面積最大;寫出該函數(shù)的其它性質(zhì)(一條即可):____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】程大位是我國(guó)明朝商人,珠算發(fā)明家.他60歲時(shí)完成的《直指算法統(tǒng)宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問(wèn)題:

一百饅頭一百僧,大僧三個(gè)更無(wú)爭(zhēng),

小僧三人分一個(gè),大小和尚得幾丁.

意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完,大、小和尚各有多少人,下列求解結(jié)果正確的是( 。

A. 大和尚25人,小和尚75 B. 大和尚75人,小和尚25

C. 大和尚50人,小和尚50 D. 大、小和尚各100

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】聲音在空氣中傳播的速度簡(jiǎn)稱音速,實(shí)驗(yàn)測(cè)得音速與氣溫的一些數(shù)據(jù)如下表:

下列結(jié)論錯(cuò)誤的是(

A.在這個(gè)變化中,氣溫是自變量,音速是因變量

B.yx的增大而增大

C.當(dāng)氣溫為30°C時(shí),音速為350/

D.溫度每升高5°C,音速增加3/

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AMBN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)CD

1)求∠CBD的度數(shù);

2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫出變化規(guī)律.

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使ACB=∠ABD時(shí),直接寫出ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABy=kx+by軸于點(diǎn)A(0,1),交x軸于點(diǎn)B3,0.平行于y軸的直線x=1AB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線x=1上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)P1,n.

1)求直線AB的表達(dá)式;

2)求ABP的面積(用含n的代數(shù)式表示);

3)當(dāng)SABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,直接寫出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為y(元),在乙園所需總費(fèi)用為y(元),y、y之間的函數(shù)關(guān)系如圖所示,折線OAB表示y之間的函數(shù)關(guān)系.

1)甲采摘園的門票是  元,在乙園采摘草莓超過(guò)______后超過(guò)部分有打折優(yōu)惠;

2)當(dāng)采摘量時(shí),采摘多少千克草莓,甲、乙兩家采摘園的總費(fèi)用相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)整式表示、兩數(shù)和的平方

整式表示、兩數(shù)差的平方

仿照上例填空:整式表示:______

整式表示:______

2)試計(jì)算、取不同數(shù)值時(shí),的值填入下表:

的值

當(dāng),時(shí)

當(dāng)時(shí)

當(dāng)時(shí)

當(dāng),時(shí)

3)根據(jù)上表,我發(fā)現(xiàn)的規(guī)律______

4)用發(fā)現(xiàn)的規(guī)律計(jì)算:

查看答案和解析>>

同步練習(xí)冊(cè)答案