【題目】圖中所示的拋物線形拱橋,當(dāng)拱頂離水面4m時(shí),水面寬8m.水面上升3米,水面寬度減少多少?下面給出了解決這個(gè)問題的兩種建系方法.
方法一如圖1,以上升前的水面所在直線與拋物線左側(cè)交點(diǎn)為原點(diǎn),以上升前的水面所在直線為x軸,建立平面直角坐標(biāo)系xOy;
方法二如圖2,以拋物線頂點(diǎn)為原點(diǎn),以拋物線的對(duì)稱軸為y軸,建立平面直角坐標(biāo)系xOy,
【答案】4m
【解析】
方法一:根據(jù)頂點(diǎn)坐標(biāo)為(4,4),設(shè)其解析式為y=a(x﹣4)2+4,將(0,0)代入求出a的值即可得;
方法二:設(shè)拋物線解析式為y=ax2,將點(diǎn)(4,﹣4)代入求得a的值,據(jù)此可得拋物線的解析式,再求出上漲3m后,即y=﹣1時(shí)x的值即可得.
解:方法一、根據(jù)題意知,拋物線與x軸的交點(diǎn)為(0,0)、(8,0),其頂點(diǎn)坐標(biāo)為(4,4),
設(shè)解析式為y=a(x﹣4)2+4,
將點(diǎn)(0,0)代入,得:16a+4=0,
解得:a=﹣,
則拋物線解析式為y=﹣(x﹣4)2+4=﹣x2+2x,
當(dāng)y=3時(shí),﹣x2+2x=3,
解得:x=2或x=6,
則水面的寬減少了8﹣(6﹣2)=4(m).
方法二:由題意知,拋物線過點(diǎn)(4,﹣4),
設(shè)拋物線解析式為y=ax2,
將點(diǎn)(4,﹣4)代入,得:16a=﹣4,
解得:a=﹣,
所以拋物線解析式為y=﹣x2,
當(dāng)y=﹣1時(shí),﹣x2=﹣1,
解得:x=2或x=﹣2,
則水面的寬減少了8﹣4=4(m).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求△ABC的面積;
(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O,M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),O為坐標(biāo)原點(diǎn),點(diǎn)B在第一象限,連接AC, tan∠ACO=2,D是BC的中點(diǎn),
(1)求點(diǎn)D的坐標(biāo);
(2)如圖2,M是線段OC上的點(diǎn),OM=OC,點(diǎn)P是線段OM上的一個(gè)動(dòng)點(diǎn),經(jīng)過P、D、B三點(diǎn)的拋物線交 軸的正半軸于點(diǎn)E,連接DE交AB于點(diǎn)F.
①將△DBF沿DE所在的直線翻折,若點(diǎn)B恰好落在AC上,求此時(shí)點(diǎn)P的坐標(biāo);
②以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當(dāng)動(dòng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)M時(shí),點(diǎn)G也隨之運(yùn)動(dòng),請(qǐng)直接寫出點(diǎn)G運(yùn)動(dòng)的路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點(diǎn)A(﹣3,0),B(1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論:①2a﹣b=0;②a+b+c=0;③a﹣b>am2+bm;④當(dāng)△ABC是等腰直角三角形時(shí),a=﹣0.5;⑤若D(0,3),則拋物線的對(duì)稱軸直線x=﹣1上的動(dòng)點(diǎn)P與B、D兩點(diǎn)圍成的△PBD周長最小值為.其中,正確的個(gè)數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c的圖象開口向上,且對(duì)稱軸在(﹣1,0)的左邊,下列結(jié)論一定正確的是( 。
A.abc>0B.2a﹣b<0C.b2﹣4ac<0D.a﹣b+c>﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了美化校園環(huán)境,向園林公司購買一批樹苗.公司規(guī)定:若購買樹苗不超過60棵,則每棵樹售價(jià)120元;若購買樹苗超過60棵,則每增加1棵,每棵樹售價(jià)均降低0.5元,且每棵樹苗的售價(jià)降到100元后,不管購買多少棵樹苗,每棵售價(jià)均為100元.
(1)若該學(xué)校購買50棵樹苗,求這所學(xué)校需向園林公司支付的樹苗款;
(2)若該學(xué)校向園林公司支付樹苗款8800元,求這所學(xué)校購買了多少棵樹苗.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫州某企業(yè)安排名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)件甲或件乙,甲產(chǎn)品每件可獲利元.根據(jù)市場(chǎng)需求和生產(chǎn)經(jīng)驗(yàn),乙產(chǎn)品每天產(chǎn)量不少于件,當(dāng)每天生產(chǎn)件時(shí),每件可獲利元, 每增加件,當(dāng)天平均每件利潤減少元.設(shè)每天安排人生產(chǎn)乙產(chǎn)品.
根據(jù)信息填表:
產(chǎn)品種類 | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(元) |
甲 | __________ | _____________ | |
乙 | _____________ |
若每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多元,求每件乙產(chǎn)品可獲得的利潤.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com