【題目】安岳是有名的“檸檬之鄉(xiāng)”,某超市用3000元進(jìn)了一批檸檬銷(xiāo)售良好;又用7700元購(gòu)來(lái)一批檸檬,但這次的進(jìn)價(jià)比第一批高了10%,購(gòu)進(jìn)數(shù)量是第一批的2倍多500斤.
(1)第一批檸檬的進(jìn)價(jià)是每斤多少元?
(2)為獲得更高利潤(rùn),超市決定將第二批檸檬分成大果子和小果子分別包裝出售,大果子的售價(jià)是第一批檸檬進(jìn)價(jià)的2倍,小果子的售價(jià)是第一批檸檬進(jìn)價(jià)的1.2倍.問(wèn)大果子至少要多少斤才能使第二批檸檬的利潤(rùn)不低于3080元?
【答案】(1)2元;(2)至少要1487.5斤.
【解析】
(1)設(shè)第一批檸檬的進(jìn)價(jià)是每斤x元,根據(jù)第二次購(gòu)進(jìn)數(shù)量是第一批的2倍多500斤即可得出分式方程求出答案;
(2)首先求出第二批檸檬的數(shù)量,第二批檸檬的進(jìn)價(jià),大果子每斤利潤(rùn)和小果子每斤利潤(rùn),進(jìn)而根據(jù)利潤(rùn)不低于3080元得出不等式解答即可.
解:(1)設(shè)第一批檸檬的進(jìn)價(jià)是每斤x元,
據(jù)題意得:,
解得:x=2
經(jīng)檢驗(yàn),x=2是原方程的解且符合題意
答:第一批檸檬的進(jìn)價(jià)是2元每斤;
(2)第二批檸檬的數(shù)量為:7700÷2(1+10%)=3500(斤),
第二批檸檬的進(jìn)價(jià)為:2(1+10%)=2.2元,
大果子每斤利潤(rùn)為2×2-2.2=1.8元,小果子每斤利潤(rùn)為2×1.2-2.2=0.2元,
設(shè)大果子的數(shù)量為y斤才能使第二批檸檬的利潤(rùn)不低于3080元,
根據(jù)題意得:1.8y+(3500y)×0.2≥3080,
解得:y≥1487.5,
答:大果子至少要1487.5斤才能使第二批檸檬的利潤(rùn)不低于3080元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)C在第一象限,且∠COA=60°,以OA、OC為鄰邊作菱形OABC,且菱形OABC的面積為.
(1)求B. C兩點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿射線CB勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從A點(diǎn)出發(fā)沿射線BA的方向勻速運(yùn)動(dòng),P、Q兩點(diǎn)的運(yùn)動(dòng)速度均為2個(gè)單位/秒,連接PQ和AC,PQ和AC所在直線交于點(diǎn)D,點(diǎn)E為線段BQ的中點(diǎn),連接DE,設(shè)動(dòng)點(diǎn)P、Q的運(yùn)動(dòng)時(shí)間為t,請(qǐng)將△DQE的面積S用含t的式子表示,并直接寫(xiě)出t的取值范圍;
(3)在(2)的條件下,過(guò)點(diǎn)Q作QF⊥y軸于點(diǎn)F,當(dāng)t為何值時(shí),以P、B.、F.、Q為頂點(diǎn)的四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)和.
(1)求拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);
(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點(diǎn)).將圖象M沿直線翻折,得到圖象N.若過(guò)點(diǎn)的直線與圖象M、圖象N都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則下列結(jié)論錯(cuò)誤的是( )
A. AF=AE B. △ABE≌△AGF C. EF= D. AF=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一水池有兩個(gè)進(jìn)水口,一個(gè)出水口,一個(gè)水口在單位時(shí)間內(nèi)的進(jìn)、出水量如圖(a)、(b)所示,某天從0點(diǎn)到6點(diǎn),該水池的蓄水量如圖(c)所示,給出以下3個(gè)論斷:①0點(diǎn)到3點(diǎn)只進(jìn)水不出水;②3點(diǎn)到4點(diǎn)不進(jìn)水只出水;③4點(diǎn)到6點(diǎn)一定不進(jìn)水不出水.則正確的論斷是________.(填上所有正確論斷的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚(yú)島自古就是中國(guó)的!2017年5月18日,中國(guó)海警2305,2308,2166,33115艦船隊(duì)在中國(guó)的釣魚(yú)島領(lǐng)海內(nèi)巡航,如圖,我軍以30km/h的速度在釣魚(yú)島A附近進(jìn)行合法巡邏,當(dāng)巡邏艦行駛到B處時(shí),戰(zhàn)士發(fā)現(xiàn)A在他的東北方向,巡邏艦繼續(xù)向北航行40分鐘后到達(dá)點(diǎn)C,發(fā)現(xiàn)A在他的東偏北15°方向,求此時(shí)巡邏艦與釣魚(yú)島的距離(≈1.414,結(jié)果精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解成都市初中學(xué)生“數(shù)學(xué)核心素養(yǎng)”的掌握情況,教育科學(xué)院命題教師赴某校初三年級(jí)進(jìn)行調(diào) 研,命題教師將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿分 160 分)分為 5 組:第一組 85~100;第二組100~115;第三組 115~130;第四組 130~145;第五組 145~160,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問(wèn)題:
(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)多少名學(xué)生?成績(jī)?yōu)榈谖褰M的有多少名學(xué)生?
(2)針對(duì)考試成績(jī)情況,現(xiàn)各組分別派出1名代表(分別用 A、B、C、D、E 表示5個(gè)小組中選出來(lái)的同學(xué)),命題教師從這5名同學(xué)中隨機(jī)選出兩名同學(xué)談?wù)勛鲱}的感想,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法求出所選兩名同學(xué)剛好來(lái)自第一、五組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分.規(guī)定:85≤x≤100為A級(jí),75≤x<85為B級(jí),60≤x<75為C級(jí),x<60為D級(jí).現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)在這次調(diào)查中,一共抽取了________名學(xué)生,a=________%;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為________度;
(4)若該校共有2 000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com