【題目】如圖,在中,,、的兩個(gè)外角,平分平分

求證:四邊形是菱形.

,連接,求長(zhǎng).

【答案】(1)見解析;(2)

【解析】

1)由在△ABCAB=AC,B=60°,可得△ABC是等邊三角形,又由AD平分∠FAC,CD平分∠ECA,可得△ACD是等邊三角形繼而證得結(jié)論;

2)由四邊形ABCD是菱形B=60°,易得ACBD互相垂直且平分,然后由含30°角的直角三角形的性質(zhì),求得答案

1∵在△ABC,AB=AC,B=60°,∴△ABC是等邊三角形,∴∠BAC=ACB=60°,AB=BC=AC,∴∠FAC=ACE=120°.

AD平分∠FACCD平分∠ECA,∴∠DAC=DCA=60°,∴△ACD是等邊三角形,AD=CD=AC,AB=BC=CD=AD∴四邊形ABCD是菱形

2∵四邊形ABCD是菱形,且∠ABC=60°,BDAC,ABO=ABC=30°,OA=AB=×2=1,OB==,BD=2OB=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計(jì)),這些薄板的形狀均為正方形,邊長(zhǎng)(單位:cm)在550之間,每張薄板的成本價(jià)(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(jià)(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與薄板的大小無關(guān),是固定不變的,浮動(dòng)價(jià)與薄板的邊長(zhǎng)成正比例,在營(yíng)銷過程中得到了表格中的數(shù)據(jù).

薄板的邊長(zhǎng)(cm)

20

30

出廠價(jià)(元/張)

50

70

(1)求一張薄板的出廠價(jià)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式;

(2)40cm的薄板,獲得的利潤(rùn)是26元(利潤(rùn)=出廠價(jià)﹣成本價(jià)).

①求一張薄板的利潤(rùn)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式;

②當(dāng)邊長(zhǎng)為多少時(shí),出廠一張薄板獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為的等邊三角形的頂點(diǎn)分別在邊上當(dāng)在邊上運(yùn)動(dòng)時(shí),隨之在邊上運(yùn)動(dòng),等邊三角形的形狀保持不變,運(yùn)動(dòng)過程中,點(diǎn)到點(diǎn)的最大距離為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P,Q分別是等邊△ABCAB,BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ,CP交于點(diǎn)M.

1)求證:△ABQCAP;

2)如圖1,當(dāng)點(diǎn)P,Q分別在AB,BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說明理由;若不變,求出它的度數(shù).

3)如圖2,若點(diǎn)P,Q在分別運(yùn)動(dòng)到點(diǎn)B和點(diǎn)C后,繼續(xù)在射線AB,BC上運(yùn)動(dòng),直線AQ,CP交點(diǎn)為M,則∠QMC= 度.(直接填寫度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是

ADBAC的平分線;②∠ADC=60°點(diǎn)DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,動(dòng)點(diǎn)從點(diǎn)開始沿以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)移動(dòng),動(dòng)點(diǎn)從點(diǎn)開始沿以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)移動(dòng).如果、分別從同時(shí)出發(fā),用(秒)表示移動(dòng)的時(shí)間,那么:

當(dāng)為何值時(shí),四邊形是梯形,此時(shí)梯形的面積是多少?

當(dāng)為何值時(shí),以點(diǎn)為頂點(diǎn)的三角形與相似?

若設(shè)四邊形的面積為,試寫出的函數(shù)關(guān)系式,并求出取何值時(shí),四邊形的面積最?

軸上是否存在點(diǎn),使點(diǎn)在移動(dòng)過程中,以、為頂點(diǎn)的四邊形的面積是一個(gè)常數(shù)?若存在請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是直徑為的圓內(nèi)接等腰三角形,如果此三角形的底邊,則的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】泰勒斯是古希臘哲學(xué)家,相傳他利用三角形全等的方法求出岸上一點(diǎn)到海中一艘船的距離.如圖,B是觀察點(diǎn),船AB的正前方,過BAB的垂線,在垂線上截取任意長(zhǎng)BD,CBD的中點(diǎn),觀察者從點(diǎn)D沿垂直于BDDE方向走,直到點(diǎn)E、船A和點(diǎn)C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABC中,AB=AC=BC=10厘米,M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度是1厘米/秒的速度,點(diǎn)N的速度是2厘米/秒,當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).

1M、N同時(shí)運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?

2M、N同時(shí)運(yùn)動(dòng)幾秒后,可得等邊三角形AMN?

3MNBC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰AMN,如果存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間?

查看答案和解析>>

同步練習(xí)冊(cè)答案