【題目】泰勒斯是古希臘哲學(xué)家,相傳他利用三角形全等的方法求出岸上一點(diǎn)到海中一艘船的距離.如圖,B是觀察點(diǎn),船A在B的正前方,過B作AB的垂線,在垂線上截取任意長BD,C是BD的中點(diǎn),觀察者從點(diǎn)D沿垂直于BD的DE方向走,直到點(diǎn)E、船A和點(diǎn)C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。
A.SASB.ASAC.AASD.SSS
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人同時(shí)從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度Vl與V2(Vl<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;乙用一半的時(shí)間使用速度Vl、另一半的時(shí)間使用速度V2;關(guān)于甲乙二人從A地到達(dá)B地的路程與時(shí)間的函數(shù)圖象及關(guān)系,有圖中4個(gè)不同的圖示分析.其中橫軸t表示時(shí)間,縱軸s表示路程,其中正確的圖示分析為( )
A. 圖(1) B. 圖(1)或圖(2) C. 圖(3) D. 圖(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC中,點(diǎn)E是直線BC上一點(diǎn),∠ADB=75°.
(1) 如圖1,∠DAE=30°,證明:BE=DC;
(2) 如圖2,點(diǎn)E在BC延長線上,CA平分∠DAE,求值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校田徑體育場一部分的示意圖,第一條跑道每圈為米,跑道分直道和彎道,直道為長相等的平行線段,彎道為同心的半圓型,彎道與直道相連接,已知直道的長米,跑道的寬為米.,結(jié)果精確到
求第一條跑道的彎道部分的半徑.
求一圈中第二條跑道比第一條跑道長多少米?
若進(jìn)行米比賽,求第六道的起點(diǎn)與圓心的連線與的夾角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長AP交CD于F點(diǎn),連結(jié)CP并延長CP交AD于Q點(diǎn).給出以下結(jié)論:
①四邊形AECF為平行四邊形;
②∠PBA=∠APQ;
③△FPC為等腰三角形;
④△APB≌△EPC.
其中正確結(jié)論的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MAN=90°,點(diǎn)C在邊AM上,AC=4,點(diǎn)B為邊AN上一動(dòng)點(diǎn),連接BC,△A′BC與△ABC關(guān)于BC所在直線對稱,點(diǎn)D,E分別為AC,BC的中點(diǎn),連接DE并延長交A′B所在直線于點(diǎn)F,連接A′E.當(dāng)△A′EF為直角三角形時(shí),AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長均為1的方格紙中,線段AB的端點(diǎn)A、B均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫出以AB為一條直角邊的等腰直角△ABC,頂點(diǎn)C在小正方形的頂點(diǎn)上;
(2)在方格紙中畫出△ABC的中線BD,將線段DC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段CD′,畫出旋轉(zhuǎn)后的線段CD′,連接BD′,直接寫出四邊形BDCD′的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com