【題目】已知等邊ABC中,點E是直線BC上一點,ADB=75°.

(1) 如圖1,DAE=30°,證明:BE=DC;

(2) 如圖2,點EBC延長線上,CA平分DAE,求

【答案】1)見詳解;(2) .

【解析】

1)證△ABE≌△ACD即可得到BE=DC;

2)利用含30°角的直角三角形三邊關系求出CE的值,再通過△ABD∽△EBA求出BE的值,即可求得答案.

解:(1)∵ADB=75°

∴∠ADC=180°-75°=105°

∵∠AED+DAE=ADC,DAE=30°

∴∠AED=105°-30°=75°

∴∠AEB=105°=ADC

∵△ABC為等邊三角形

AB=AC,B=C

在△ABE和△ACD中,

∴△ABE≌△ACD

BE=DC

2)如圖,過點AAMBCM,

∵△ABC為等邊三角形,ADB=75°

∴∠DAC=75°-60°=15°,

CA平分∠DAE,

∴∠CAE=15°,∠E=60°-15°=45°,

∴△AEM為等腰直角三角形

AB=BC=AC=2a

AMBC,

易得BM=MC=aAM=a,EM=a,

CE=BE=2a+a-a=a+a,

在△ABD與△EBA中,∠ADB=BAE=75°,∠B=B,

∴△ABD∽△EBA,

,

BD=2a-2a

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ACBC5,∠ACB80°,OABC中一點,∠OAB10°,∠OBA30°,則線段AO的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點P,Q分別是等邊△ABCAB,BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ,CP交于點M.

1)求證:△ABQCAP;

2)如圖1,當點P,Q分別在AB,BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).

3)如圖2,若點P,Q在分別運動到點B和點C后,繼續(xù)在射線AB,BC上運動,直線AQ,CP交點為M,則∠QMC= 度.(直接填寫度數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點坐標為,點坐標為,動點從點開始沿以每秒個單位長度的速度向點移動,動點從點開始沿以每秒個單位長度的速度向點移動.如果分別從、同時出發(fā),用(秒)表示移動的時間,那么:

為何值時,四邊形是梯形,此時梯形的面積是多少?

為何值時,以點、、為頂點的三角形與相似?

若設四邊形的面積為,試寫出的函數(shù)關系式,并求出取何值時,四邊形的面積最小?

軸上是否存在點,使點、在移動過程中,以、、、為頂點的四邊形的面積是一個常數(shù)?若存在請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是直徑為的圓內(nèi)接等腰三角形,如果此三角形的底邊,則的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為美化校園,準備在長35米,寬20米的長方形場地上,修建若干條寬度相同的道路,余下部分作草坪,并請全校學生參與方案設計,現(xiàn)有3位同學各設計了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).

請你根據(jù)這一問題,在每種方案中都只列出方程不解.

①甲方案設計圖紙為圖l,設計草坪的總面積為600平方米.

②乙方案設計圖紙為圖2,設計草坪的總面積為600平方米.

③丙方案設計圖紙為圖3,設計草坪的總面積為540平方米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】泰勒斯是古希臘哲學家,相傳他利用三角形全等的方法求出岸上一點到海中一艘船的距離.如圖,B是觀察點,船AB的正前方,過BAB的垂線,在垂線上截取任意長BD,CBD的中點,觀察者從點D沿垂直于BDDE方向走,直到點E、船A和點C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明利用所學函數(shù)知識,對函數(shù)進行了如下研究.列表如下:

x

-5

-4

-3

-2

-1

0

1

2

3

y

7

5

3

m

1

n

1

1

1

(1)自變量x的取值范圍是________;

(2)表格中:m=_______n=________;

(3)在給出的坐標系中畫出函數(shù)的圖象;

(4)一次函數(shù)的圖象與函數(shù)的圖象交點的坐標為_______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系上,已知點A84),ABy軸于B,ACx軸于C,直線yxABD

1)直接寫出BC、D三點坐標;

2)若EOD延長線上一動點,記點E橫坐標為a,BCE的面積為S,求Sa的關系式;

3)當S20時,過點EEFABF,G、H分別為ACCB上動點,求FG+GH的最小值.

查看答案和解析>>

同步練習冊答案