【題目】將一副三角板按如圖放置,則下列結(jié)論

①如果∠2=30°,則有ACDE;

②∠BAE+CAD =180°;

③如果BCAD,則有∠2=45°;

④如果∠CAD=150°,必有∠4=C;

正確的有( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

【答案】D

【解析】①∵∠2=30°,

∴∠1=90°30°=60°,

∵∠E=60°,

∴∠1=E

ACDE.

∴①正確;

②∵∠BAC=90°,EAD=90°,

∴∠1+2+2+3=180°,

1+2+3=CAD,2=BAE,

∴∠BAE+CAD=180°.

∴②正確

③∵BCAD,

∴∠3=B=45°

∴∠2=90°-45°=45°,

∴③正確;

④由②可知,∠BAE+CAD=180°,

∵∠CAD=150°,

∴∠BAE=30°,

即∠2=30°,

當(dāng)∠2=30°時(shí),由①可知ACDE

∴∠4=C.

∴④正確.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知小敏家距學(xué)校5km,小飛家距小敏家3km.若小飛家距學(xué)校距離為xkm,則x滿足(

A.x2B.2≤x≤8C.2≤x≤5D.2x8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)角的兩邊分別垂直于另一個(gè)角的兩邊,且這兩個(gè)角的差是30°,則這兩個(gè)角的度數(shù)分別是___________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)第1次用39萬(wàn)元購(gòu)進(jìn)A、B兩種商品,銷售完后獲得利潤(rùn)6萬(wàn)元,它們的進(jìn)價(jià)和售價(jià)如下表:(總利潤(rùn)=單件利潤(rùn)×銷售量)

商品

價(jià)格

A

B

進(jìn)價(jià)(元/件)

1200

1000

售價(jià)(元/件)

1350

1200

(1)該商場(chǎng)第1次購(gòu)進(jìn)A、B兩種商品各多少件?

(2)商場(chǎng)第2次以原價(jià)購(gòu)進(jìn)A、B兩種商品,購(gòu)進(jìn)A商品的件數(shù)不變,而購(gòu)進(jìn)B商品的件數(shù)是第1次的2倍,A商品按原價(jià)銷售,而B商品打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營(yíng)活動(dòng)獲得利潤(rùn)等于54000元,則B種商品是打幾折銷售的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每個(gè)月可賣出200件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣10件.設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
(3)若每個(gè)月的利潤(rùn)不低于2160元,售價(jià)應(yīng)在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)圖形面積的計(jì)算,常?梢缘玫揭恍┯杏玫男畔,或可以求出一些不規(guī)則圖形的面積.

(1)如圖1所示,將一張長(zhǎng)方形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為m的大正方形,兩塊是邊長(zhǎng)都為n的小正方形,五塊是長(zhǎng)為m,寬為n的全等小長(zhǎng)方形,且m>n.觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 .

(2)若圖1中每塊小長(zhǎng)方形的面積為12cm2,四個(gè)正方形的面積和為50 cm2,試求圖中所有裁剪線(虛線部分)長(zhǎng)之和.

(3)將圖2中邊長(zhǎng)為ab的正方形拼在一起,B,C,G三點(diǎn)在同一條直線上,連接BDBF,若這兩個(gè)正方形的邊長(zhǎng)滿足a+b=10,ab=16,請(qǐng)求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的邊BC=2 cm,且△ABC內(nèi)接于半徑為2cm的⊙O,則∠A=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“轉(zhuǎn)化”是數(shù)學(xué)中的一種重要思想,即把陌生的問(wèn)題轉(zhuǎn)化成熟悉的問(wèn)題,把復(fù)雜的問(wèn)題轉(zhuǎn)化成簡(jiǎn)單的問(wèn)題,把抽象的問(wèn)題轉(zhuǎn)化為具體的問(wèn)題.

已知:如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”,試解答下列問(wèn)題:

問(wèn)題一在圖1中,請(qǐng)直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系   

問(wèn)題二:在圖2中,若∠D=40°,∠B=36°,∠DAB和BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N,試求P的度數(shù);

問(wèn)題三:在圖3中,已知AP、CP分別平分∠BAM、∠BCD,請(qǐng)問(wèn)P與∠B、∠D之間存在著怎樣的數(shù)量關(guān)系?并說(shuō)明理由.

問(wèn)題四:在圖4中,已知AP的反向延長(zhǎng)線平分∠EAB,CP平分∠DCF,請(qǐng)直接寫出∠P與∠B、∠D之間的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=60°,作邊長(zhǎng)為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點(diǎn)A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點(diǎn)A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第n次作圖后,點(diǎn)Bn到ON的距離是

查看答案和解析>>

同步練習(xí)冊(cè)答案