【題目】某商場第1次用39萬元購進A、B兩種商品,銷售完后獲得利潤6萬元,它們的進價和售價如下表:(總利潤=單件利潤×銷售量)

商品

價格

A

B

進價(元/件)

1200

1000

售價(元/件)

1350

1200

(1)該商場第1次購進A、B兩種商品各多少件?

(2)商場第2次以原價購進A、B兩種商品,購進A商品的件數(shù)不變,而購進B商品的件數(shù)是第1次的2倍,A商品按原價銷售,而B商品打折銷售,若兩種商品銷售完畢,要使得第2次經營活動獲得利潤等于54000元,則B種商品是打幾折銷售的

【答案】(1)商場第1次購進A、B兩種商品各200件、150件;(2)B商品打9折銷售的.

【解析】分析:(1)設購進A種商品x件,B種商品y件,列出方程組可求解;
(2)由(1)得AB商品購進數(shù)量,結合(2)中數(shù)量變化,再根據(jù)要使得第2次經營活動獲得利潤等于54000元,得出方程即可.

詳解:(1)設第1次購進A商品x件,B商品y件.由題意得:

,

整理得出:

解得:,

答:商場第1次購進A、B兩種商品各200件、150件;

(2)設B商品打m折出售.由題意得:

解得:

答:B商品打9折銷售的.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知Mx2,x+1)在x軸上,則x的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從AB記為:A→B(+1,+4),從BA記為:B→A(-1,-4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.

(1)圖中A→C( ),B→C( , ),C→ (+1, );

(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標出P的位置;

(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;

(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應記為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對面積為s的△ABC逐次進行以下操作:

第一次操作,分別延長AB、BC、CA至點A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1

第二次操作,分別延長A1B1、B1C1、C1A1至點A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;

…;

按此規(guī)律繼續(xù)下去,可得到△AnBnCn,則其面積Sn=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面內,二次函數(shù)圖像的頂點為A(1,﹣4),且過點B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖像向右平移幾個單位,可使平移后所得圖像經過坐標原點?并直接寫出平移后所得圖像與x軸的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣2x+8與兩坐標軸分別交于P、Q兩點,在線段PQ上有一點A,過A點分別作兩坐標軸的垂線,垂足分別為BC

1)若矩形ABOC的面積為5,求A點坐標.

2)若點A在線段PQ上移動,求矩形ABOC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按如圖放置,則下列結論

①如果∠2=30°,則有ACDE;

②∠BAE+CAD =180°;

③如果BCAD,則有∠2=45°;

④如果∠CAD=150°,必有∠4=C;

正確的有( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲數(shù)是乙數(shù)的2倍,甲比乙多(

A.50%B.100%C.200%D.150%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC在直角坐標系中,

(1)ABC中任意一點M(a,b)經過平移后的對應點為M′(a+2,b+1),將ABC作同樣的平移,得到A′B′C′,寫出A′、B′、C′的坐標,并在圖中畫出平移后圖形.

(2)求出三角形ABC的面積.

查看答案和解析>>

同步練習冊答案