【題目】已知在平面直角坐標系中放置了5個如圖所示的正方形(用陰影表示),點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3在x軸上.若正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3 , 則點A3到x軸的距離是( )
A.
B.
C.
D.
【答案】D
【解析】解:過小正方形的一個頂點W作FQ⊥x軸于點Q,過點A3F⊥FQ于點F, ∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3 ,
∴∠B3C3 E4=60°,∠D1C1E1=30°,∠E2B2C2=30°,
∴D1E1= D1C1= ,
∴D1E1=B2E2= ,
∴cos30°= = ,
解得:B2C2= ,
∴B3E4= ,
cos30°= ,
解得:B3C3= ,
則WC3= ,
根據(jù)題意得出:∠WC3 Q=30°,∠C3 WQ=60°,∠A3 WF=30°,
∴WQ= × = ,
FW=WA3cos30°= × = ,
則點A3到x軸的距離是:FW+WQ= + = ,
故選:D.
【考點精析】關于本題考查的正方形的性質和解直角三角形,需要了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】為了解市民對全市創(chuàng)衛(wèi)工作的滿意程度,某中學教學興趣小組在全市甲、乙兩個區(qū)內進行了調查統(tǒng)計,將調查結果分為不滿意,一般,滿意,非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統(tǒng)計圖.
請結合圖中信息,解決下列問題:
(1)求此次調查中接受調查的人數(shù).
(2)求此次調查中結果為非常滿意的人數(shù).
(3)興趣小組準備從調查結果為不滿意的4位市民中隨機選擇2為進行回訪,已知4為市民中有2位來自甲區(qū),另2位來自乙區(qū),請用列表或用畫樹狀圖的方法求出選擇的市民均來自甲區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知直線l1:y= x與直線l2:y=﹣x+6相交于點M,直線l2與x軸相交于點N.
(1)求M,N的坐標.
(2)矩形ABCD中,已知AB=1,BC=2,邊AB在x軸上,矩形ABCD沿x軸自左向右以每秒1個單位長度的速度移動,設矩形ABCD與△OMN的重疊部分的面積為S,移動的時間為t(從點B與點O重合時開始計時,到點A與點N重合時計時開始結束).直接寫出S與自變量t之間的函數(shù)關系式(不需要給出解答過程).
(3)在(2)的條件下,當t為何值時,S的值最大?并求出最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織學生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機抽取部分學生書法作品的評定結果進行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:
根據(jù)上述信息完成下列問題:
(1)求這次抽取的樣本的容量;
(2)請在圖②中把條形統(tǒng)計圖補充完整;
(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結果都精確到0.1米,參考數(shù)據(jù): ≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,則平臺DE的長最多為米;
(2)一座建筑物GH距離坡角A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內,點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點都在格點上,點A,C的坐標分別為(﹣5,1)、(﹣1,4),結合所給的平面直角坐標系解答下列問題:
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)畫出△ABC關于原點O對稱的△A2B2C2;
(3)點C1的坐標是;點C2的坐標是;過C、C1、C2三點的圓的圓弧 的長是(保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將45°的∠AOB按下面的方式放置在一把刻度尺上:頂點O與尺下沿的端點重合,OA與尺下沿重合,OB與尺上沿的交點B在尺上的讀數(shù)恰為2cm.若按相同的方式將37°的∠AOC放置在該刻度尺上,則OC與尺上沿的交點C在尺上的讀數(shù)約為cm.(結果精確到0.1cm,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,對角線AC的中點為O,過點O作AC的垂線分別與AD、BC相交于點E、F,連接AF.求證:AE=AF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com