【題目】如圖,拋物線(xiàn)y=x2+bx+c過(guò)點(diǎn)A(3,0),B(1,0),交y軸于點(diǎn)C,點(diǎn)P是該拋物線(xiàn)上一動(dòng)點(diǎn),點(diǎn)P從C點(diǎn)沿拋物線(xiàn)向A點(diǎn)運(yùn)動(dòng)(點(diǎn)P不與A重合),過(guò)點(diǎn)P作PD∥y軸交直線(xiàn)AC于點(diǎn)D.
(1)求拋物線(xiàn)的解析式;
(2)求點(diǎn)P在運(yùn)動(dòng)的過(guò)程中線(xiàn)段PD長(zhǎng)度的最大值;
(3)△APD能否構(gòu)成直角三角形?若能,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2-4x+3;(2)點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線(xiàn)段PD長(zhǎng)度的最大值為;(3)能,點(diǎn)P的坐標(biāo)為:(1,0)或(2,-1).
【解析】
(1)把點(diǎn)A、B的坐標(biāo)代入拋物線(xiàn)解析式,解方程組得到b、c的值,即可得解;
(2)求出點(diǎn)C的坐標(biāo),再利用待定系數(shù)法求出直線(xiàn)AC的解析式,再根據(jù)拋物線(xiàn)解析式設(shè)出點(diǎn)P的坐標(biāo),然后表示出PD的長(zhǎng)度,再根據(jù)二次函數(shù)的最值問(wèn)題解答;
(3)分情況討論①∠APD是直角時(shí),點(diǎn)P與點(diǎn)B重合,②求出拋物線(xiàn)頂點(diǎn)坐標(biāo),然后判斷出點(diǎn)P為在拋物線(xiàn)頂點(diǎn)時(shí),∠PAD是直角,分別寫(xiě)出點(diǎn)P的坐標(biāo)即可;
(1)把點(diǎn)A(3,0)和點(diǎn)B(1,0)代入拋物線(xiàn)y=x2+bx+c,
得:
解得
∴y=x2-4x+3.
(2)把x=0代入y=x2-4x+3,得y=3.
∴C(0,3).
又∵A(3,0),
設(shè)直線(xiàn)AC的解析式為:y=kx+m,
把點(diǎn)A,C的坐標(biāo)代入得:
∴直線(xiàn)AC的解析式為:y=-x+3.
PD=-x+3- (x2-4x+3)=-x2+3x=+.
∵0<x<3,
∴x=時(shí),PD最大為.
即點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線(xiàn)段PD長(zhǎng)度的最大值為.
(3)①∠APD是直角時(shí),點(diǎn)P與點(diǎn)B重合,
此時(shí),點(diǎn)P(1,0),
②∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(2,﹣1),
∵A(3,0),
∴點(diǎn)P為在拋物線(xiàn)頂點(diǎn)時(shí),∠PAD=45°+45°=90°,
此時(shí),點(diǎn)P(2,﹣1),
綜上所述,點(diǎn)P(1,0)或(2,﹣1)時(shí),△APD能構(gòu)成直角三角形;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線(xiàn)段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線(xiàn)段CQ,連接BP,DQ.
(1)、如圖a,求證:△BCP≌△DCQ;
(2)、如圖,延長(zhǎng)BP交直線(xiàn)DQ于點(diǎn)E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張老師將自己2019年10月至2020年5月的通話(huà)時(shí)長(zhǎng)(單位:分鐘)的有關(guān)數(shù)據(jù)整理如下:
①2019年10月至2020年3月通話(huà)時(shí)長(zhǎng)統(tǒng)計(jì)表
時(shí)間 | 10月 | 11月 | 12月 | 1月 | 2月 | 3月 |
時(shí)長(zhǎng)(單位:分鐘) | 520 | 530 | 550 | 610 | 650 | 660 |
②2020年4月與2020年5月,這兩個(gè)月通話(huà)時(shí)長(zhǎng)的總和為1100分鐘根據(jù)以上信息,推斷張老師這八個(gè)月的通話(huà)時(shí)長(zhǎng)的中位數(shù)可能的最大值為( )
A.550B.580C.610D.630
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上兩點(diǎn),且,連接OC,BD,OD.
(1)求證:OC垂直平分BD;
(2)過(guò)點(diǎn)C作⊙O的切線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)E,連接AD,CD.
①依題意補(bǔ)全圖形;
②若AD=6,,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形的頂點(diǎn)坐標(biāo)分別為(1,1),(1,-1),(-1,-1),(-1,1),軸上有一點(diǎn)(0,2).作點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn),……,按此操作下去,則的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大海中某燈塔P周?chē)?/span>10海里范圍內(nèi)有暗礁,一艘海輪在點(diǎn)A處觀察燈塔P在北偏東60°方向,該海輪向正東方向航行8海里到達(dá)點(diǎn)B處,這時(shí)觀察燈塔P恰好在北偏東45°方向.如果海輪繼續(xù)向正東方向航行,會(huì)有觸礁的危險(xiǎn)嗎?試說(shuō)明理由.(參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB 是⊙O 的弦,半徑OE⊥ AB ,P 為 AB 的延長(zhǎng)線(xiàn)上一點(diǎn),PC 與⊙O相切于點(diǎn) C,連結(jié) CE,交 AB 于點(diǎn) F,連結(jié) OC.
(1)求證:PC=PF.
(2)連接 BE,若∠CEB=30°,半徑為 8,tan P ,求 FB 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.打開(kāi)電視,它正在播天氣預(yù)報(bào)是不可能事件
B.要考察一個(gè)班級(jí)中學(xué)生的視力情況適合用抽樣調(diào)查
C.拋擲一枚均勻的硬幣,正面朝上的概率是,若拋擲10次,就一定有5次正面朝上.
D.甲、乙兩人射中環(huán)數(shù)的方差分別為,,說(shuō)明乙的射擊成績(jī)比甲穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某款籃球架的示意圖,支架AC與底座BC所成的∠ACB=65°,支架AB⊥BC,籃球支架HE∥BC,且籃板DF⊥HE于點(diǎn)E,已知底座BC=1米,AH=米,HF= 米,HE=1米.
(1)求∠FHE的度數(shù);
(2)已知該款籃球架符合國(guó)際籃聯(lián)規(guī)定的籃板下沿D距地面2.90米的規(guī)定,求DE的長(zhǎng)度.(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.41,≈1.41)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com