如圖,已知正方形ABCD中,邊長為10厘米,點E在AB邊上,BE=6厘米.
(1)如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPE與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPE與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD四邊運動,求經(jīng)過多長時間點P與點Q第一次在正方形ABCD邊上的何處相遇?
【考點】正方形的性質(zhì);全等三角形的判定與性質(zhì).
【專題】動點型.
【分析】正方形的四邊相等,四個角都是直角.(1)①速度相等,運動的時間相等,所以距離相等,根據(jù)全等三角形的判定定理可證明.②因為運動時間一樣,運動速度不相等,所以BP≠CQ,只有BP=CP時才相等,根據(jù)此可求解.
(2)知道速度,知道距離,這實際上是個追及問題,可根據(jù)追及問題的等量關(guān)系求解.
【解答】解:(1)①∵t=1秒,
∴BP=CQ=4×1=4厘米,
∵正方形ABCD中,邊長為10厘米
∴PC=BE=6厘米,
又∵正方形ABCD,
∴∠B=∠C,
∴△BPE≌△CQP
②∵VP≠VQ,∴BP≠CQ,
又∵△BPE≌△CQP,∠B=∠C,則BP=PC,
而BP=4t,CP=10﹣4t,
∴4t=10﹣4t
∴點P,點Q運動的時間秒,
∴厘米/秒.
(2)設(shè)經(jīng)過x秒后點P與點Q第一次相遇,
由題意,得4.8x﹣4x=30,
解得秒.
∴點P共運動了厘米
∴點P、點Q在A點相遇,
∴經(jīng)過秒點P與點Q第一次在A點相遇.
【點評】本題考查正方形的性質(zhì),四個邊相等,四個角都是直角以及全等三角形的判定和性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:
小明騎自行車上學(xué),開始以正常速度勻速行駛,但行至中途自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,加快了騎車速度,下面是小明離家后他到學(xué)校剩下的路程s關(guān)于時間t的函數(shù)圖象,那么符合小明行駛情況的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:∠AOB和兩點C、D,求作一點P,使PC=PD,且點P到∠AOB的兩邊的距離相等.
(要求:用尺規(guī)作圖,保留作圖痕跡,寫出作法,不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
計算(x+3y)2﹣(3x+y)2的結(jié)果是( )
A.8x2﹣8y2 B.8y2﹣8x2 C.8(x+y)2 D.8(x﹣y)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,DE垂直平分AC,與AC交于E,與BC交于D,∠C=15°,∠BAD=60°,則△ABC是__________三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如果把的x與y都擴大到原來的10倍,那么這個代數(shù)式的值( )
A.不變 B.?dāng)U大10倍 C.?dāng)U大100倍 D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com