【題目】已知在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)是第一象限內(nèi)一動(dòng)點(diǎn)。
(1) ①:如圖①.若動(dòng)點(diǎn)滿足,且,求點(diǎn)的坐標(biāo)。
②:如圖②,在第(1)問的條件下,將逆時(shí)針旋轉(zhuǎn)至如圖所示位置,求的值.
(2)如圖③,若點(diǎn)與點(diǎn)關(guān)于軸對稱,且, 若動(dòng)點(diǎn)滿足',問:的值是否發(fā)生變化?若變化,請說明理由,若不變化,請求出其值。
【答案】(1)①(4,0);②6;(2)的值不變,為2.
【解析】
(1)利用絕對值和偶次方的非負(fù)性求出點(diǎn)P坐標(biāo),再作輔助線利用三角形全等即可求得點(diǎn)B坐標(biāo).
(2)利用三角形全等,即可求出.
(3)利用三角形全等,求得,再利用線段之間的關(guān)系,即可求出.
(1)①∵滿足
∴ ∴
∴P(3,3)如圖所示,PM=PN
∵ ∴
∴
∴NB=AM
AM=MO-AO=3-2=1
∴B(4,0)
② 如圖所示,由①可證得
∴BD=AC,設(shè)BD=AC=a
則OD=4+a,OC=AC-AO=a-2
OD-OC=4+a-( a-2)=6
(2)過點(diǎn)B作BN⊥AP于點(diǎn)N
又∵⊥
∴
∵點(diǎn)與點(diǎn)關(guān)于軸對稱
∴
又∵
∴
∴
∴
∴
∴的值不變,為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雯雯開了一家品牌手機(jī)體驗(yàn)店,想在體驗(yàn)區(qū)(圖1陰影部分)擺放圖2所示的正六邊形桌子若干張.體驗(yàn)店平面圖是長9米、寬7米的矩形,通道寬2米,桌子的邊長為1米;擺放時(shí)要求桌子至少離墻1米,且有邊與墻平行,桌子之間的最小距離至少1米,則體驗(yàn)區(qū)可以擺放桌子( )
A. 4張 B. 5張 C. 6張 D. 7張
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王購買了一套一居室,他準(zhǔn)備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)(單位:米),解答下列問題:
(1)用含 的代數(shù)式表示地面的總面積 ;
(2)已知 ,且客廳面積是衛(wèi)生間面積的 倍,如果鋪 平方米地磚的平均費(fèi)用為 元,那么小王鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解市民對“垃圾分類知識”的知曉程度。某數(shù)學(xué)學(xué)習(xí)興趣小組對市民進(jìn)行隨機(jī)抽樣的問卷調(diào)查。調(diào)查結(jié)果分為“A.非常了解”“B.了解”"C.基本了解”,“D不太了解”四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果檢制成如下兩幅不完整的統(tǒng)計(jì)圖(圖1,圖2).請根據(jù)圖中的信息解答下列問題。
(1)這次調(diào)查的市民人數(shù)為____ 人,圖2中,____
(2)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;
(3)在圖2中的扇形統(tǒng)計(jì)圖中,求“C.基本了解”所在扇形的圓心角度數(shù);
(4)據(jù)統(tǒng)計(jì),2019年該市約有市民800萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計(jì)對“垃圾分類知識”的知曉程度為“D.不太了解”的市民約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,以等邊△ABC的邊BC為直徑作⊙O,分別交AB,AC于點(diǎn)D,E,過點(diǎn)D作DF⊥AC交AC于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若等邊△ABC的邊長為8,求由、DF、EF圍成的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,林老師在黑板上畫出如圖所示的圖形(其中點(diǎn)B、F、C、E在同一直線上),并寫出四個(gè)條件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.請你從這四個(gè)條件中選出三個(gè)作為題設(shè),另一個(gè)作為結(jié)論,組成一個(gè)真命題,并給予證明.題設(shè):______________;結(jié)論:________.(均填寫序號)
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C,D為線段AB上的兩點(diǎn),M,N分別是線段AC,BD的中點(diǎn).
(1)如果CD=5cm,MN=8cm,求AB的長;
(2)如果AB=a,MN=b,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,BC=8cm,BD=6cm如果點(diǎn)P在線段BC上以1cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)Q的速度為xcm/s,則當(dāng)△BPD與△CQP全等時(shí),x=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B在坐標(biāo)軸上,其中A(0,)、B(,0)滿足:
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)將線段AB平移到CD,點(diǎn)A的對應(yīng)點(diǎn)為C(-2,t),如圖(1)所示.若三角形ABC的面積為9,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com