【題目】已知直線l1y=﹣2x+5和直線l2yx4,直線l1y軸交于點A,直線l2y軸交于點B

1)求兩條直線l1l2的交點C的坐標;

2)求兩條直線與y軸圍成的三角形的面積;

3)已知點Dy軸上一點,若BCD為等腰直角三角形,直接寫出D點坐標.

【答案】(1)(3,﹣1);(2);(3) 0,﹣1)或(0,2

【解析】

1)解方程組即可得到兩條直線l1l2的交點C的坐標;

2)根據(jù)點C為(3,﹣1),直線l1l2y軸的交點分別為A0,5)、B0,﹣4),即可得到兩條直線與y軸圍成的三角形的面積;

3)分兩種情況,根據(jù)函數(shù)圖像及等腰直角三角形的特點即可求解.

解:(1)由題意得,

解方程組得

l1l2的交點C為(3,﹣1);

2)如圖,過點CCEy軸于E,則CE3

y=﹣2x+5中,令x0,則y5,

yx4中,令x0,則y=﹣4,

直線l1l2y軸的交點分別為A0,5)、B0,﹣4),

;

3)分兩種情況討論:當BDC90°時,點D與點E重合,即D0,﹣1);

BCD90°時,BEDE3,DO312,即D0,2);

D點坐標為(0,﹣1)或(0,2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,弦CDAB,垂足為H,與AC平行的圓O的一條切線交CD的延長線于點M,交AB的延長線于點E,切點為F,連接AF交CD于點N.

(1)求證:CA=CN;

(2)連接DF,若cosDFA=,AN=,求圓O的直徑的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件50元,售價為每件60元,每天可賣出190件;如果每件商品的售價每上漲1元,則每天少賣10件,設(shè)每件商品的售價上漲x元(x為正整數(shù)),每天的銷售利潤為y元.

1)求y關(guān)于x的關(guān)系式;

2)每件商品的售價定為多少元時,每天的利潤恰為1980元?

3)每件商品的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳館每年夏季推出兩種游泳付費方式,方式一:先購買會員證,每張會員證100元,只限本人當年使用,憑證游泳每次再付費5元;方式二:不購買會員證,每次游泳付費9元.

設(shè)小明計劃今年夏季游泳次數(shù)為x(x為正整數(shù)).

(I)根據(jù)題意,填寫下表:

游泳次數(shù)

10

15

20

x

方式一的總費用(元)

150

175

______

______

方式二的總費用(元)

90

135

______

______

(Ⅱ)若小明計劃今年夏季游泳的總費用為270元,選擇哪種付費方式,他游泳的次數(shù)比較多?

(Ⅲ)當x>20時,小明選擇哪種付費方式更合算?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道對于x軸上的任意兩點A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.

(1)已知O為坐標原點,若點P坐標為(1,3),則d(O,P)=   ;

(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=2,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;

(3)試求點M(2,3)到直線y=x+2的最小直角距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A是∠MONOM上一點,AEON

1)在圖中作∠MON的角平分線OB(要求用尺規(guī)),交AE于點B;過點AOB的垂線,垂足為點D,交ON于點C,連接CB,將圖形補充完整.

2)判斷四邊形OABC的形狀,并證明你的結(jié)論.

解:四邊形OABC   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20169月,某手機公司發(fā)布了新款智能手機,為了調(diào)查某小區(qū)業(yè)主對該款手機的購買意向,該公司在某小區(qū)隨機對部分業(yè)主進行了問卷調(diào)查,規(guī)定每人只能從A類(立刻去搶購)、B類(降價后再去買)、C類(猶豫中)、D類(肯定不買)這四類中選一類,并制成了以下兩幅不完整的統(tǒng)計圖,由圖中所給出的信息解答下列問題:

(1)扇形統(tǒng)計圖中B類對應(yīng)的百分比為   %,請補全條形統(tǒng)計圖;

(2)若該小區(qū)共有4000人,請你估計該小區(qū)大約有多少人立刻去搶購該款手機.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:如圖1,在ABC中,DEBC分別交ABD,交ACE.已知CDBE,CD=3,BE=4,求BC+DE的值.

小明發(fā)現(xiàn),過點EEFDC,交BC延長線于點F,構(gòu)造BEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).

(1)請按照上述思路完成小明遇到的這個問題

(2)參考小明思考問題的方法,解決問題:

如圖3,已知ABCD和矩形ABEF,ACDF交于點G,AC=BF=DF,求∠DGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長青化工廠與AB兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地.已知公路運價為1.5/(噸·千米),鐵路運價為1.2/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.

求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產(chǎn)品多少噸?

2)這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?

查看答案和解析>>

同步練習冊答案