【題目】已知平行四邊形ABCD.
(1)如圖1,將ABCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)一定角度得到A1B1C1D,延長(zhǎng)B1C1,分別與BC、AD的延長(zhǎng)線交于點(diǎn)M、N.
①求證:∠BMB1=∠ADA1;
②求證:B1N=AN+C1M;
(2)如圖2,將線段AD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),使點(diǎn)A的對(duì)應(yīng)點(diǎn)A1落在BC上,將線段CD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)到C1D的位置,AC1與A1D交于點(diǎn)H.若H為AC1的中點(diǎn),∠ADC1+∠A1DC=180°,A1B=nA1C,試用含n的式子表示的值.
【答案】(1)①見(jiàn)解析;②見(jiàn)解析;(2)2n+1
【解析】
(1)①先判斷出∠BMB1=∠N,再判斷出∠N=∠ADA1,即可得出結(jié)論;
②先判斷出∠DCE=∠B=∠B1=∠DC1F,DC=DC1,得出△DCE≌△DC1F,得出DE=DF,進(jìn)而判斷出Rt△DEM≌Rt△DMF,得出∠DME=∠DMF,進(jìn)而判斷出DN=MN,即可得出結(jié)論;
(2)先判斷出AT=2DH,得出∠ADT=∠A1DC,進(jìn)而判得出△A1DC≌△ADT,得出A1C=AT=2DH.即可得出結(jié)論.
解:(1)①∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠BMB1=∠N,
由旋轉(zhuǎn)知,四邊形A1B1C1D是平行四邊形,
∴A1D∥B1C1,
∴∠N=∠ADA1,
∴∠BMB1=∠ADA1;
②如圖,連接DM,過(guò)D作DE⊥BC于E,作DF⊥MN于F,
∴∠DEC=∠DFC1=90°,
顯然,∠DCE=∠B=∠B1=∠DC1F,DC=DC1,
∴△DCE≌△DC1F(AAS),
∴DE=DF,
∵DM=DM,
∴Rt△DEM≌Rt△DMF(HL),
∴∠DME=∠DMF,
又∵AN∥BM,
∴∠DME=∠MDN,
∴∠DMN=∠MDN,
∴DN=MN,
又AD=BC=B1C1,
∴B1N=B1C1+C1M+MN=AD+C1M+DN=AN+C1M;
(2)如圖,延長(zhǎng)C1D至點(diǎn)T,使DT=DC1,連接AT,
∵H為AC1的中點(diǎn),
∴AT=2DH(三角形中位線定理).
∵∠ADC1+∠A1DC=180°,∠ADC1+∠ADT=180°,
∴∠ADT=∠A1DC,
由旋轉(zhuǎn)知,A1D=AD,DC=DC1=DT,
∴△A1DC≌△ADT(SAS),
∴A1C=AT=2DH.
設(shè)DH=a,則A1C=AT=2a,
A1B=nA1C=2an,A1D=AD=BC=A1B+A1C=2an+2a,
∴A1H=A1D﹣DH=2an+2a﹣a=2an+a,
∴=2n+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的解析式利用函數(shù)圖象研究其性質(zhì)﹣運(yùn)用函數(shù)解決問(wèn)題”的學(xué)習(xí)過(guò)程.在畫(huà)函數(shù)圖象時(shí),我們可以通過(guò)描點(diǎn)或平移或翻折等方法畫(huà)出函數(shù)圖象、下面我們対函數(shù)y=|﹣1|展開(kāi)探索,請(qǐng)補(bǔ)充以下探索過(guò)程:
(1)列表
x | … | ﹣1 | ﹣ | ﹣ | ﹣ | 0 |
| … | 2 |
| 3 | … | ||||||||
y | … |
|
|
| 2 | 3 | a | … | 3 | 1 | 0 | b | … | |||||||
直接寫出函數(shù)自變量x的取值范圍,及a= ,b= ;
(2)在給出的平面直角坐標(biāo)系中,請(qǐng)用你喜歡的方法畫(huà)出這個(gè)函數(shù)的圖象,并寫出這個(gè)函數(shù)的一條性質(zhì): .
(3)若方程|﹣1|=m有且只有一個(gè)解,直接寫出m的值: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,將點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為.的平分線交于,且.若點(diǎn)落在矩形的邊上,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為( )
A.100°B.120°C.135°D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“美”、“麗”、“光”、“明”的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個(gè)球,求摸出球上的漢字剛好是“美”的概率;
(2)甲從中任取一球,不放回,再?gòu)闹腥稳∫磺,?qǐng)用樹(shù)狀圖或列表法,求甲取出的兩個(gè)球上的漢字恰能組成“美麗”或“光明”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直線上有相距的兩點(diǎn)和(點(diǎn)在點(diǎn)的右側(cè)),以為圓心作半徑為的圓,過(guò)點(diǎn)作直線.將以的速度向右移動(dòng)(點(diǎn)始終在直線上),則與直線在______秒時(shí)相切.
A.3B.3.5C.3或4D.3或3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,直線于點(diǎn).點(diǎn)在上,分別連接,,且的延長(zhǎng)線交于點(diǎn),為的切線交于點(diǎn).
(1)求證:;
(2)連接,若,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七、八年級(jí)學(xué)生對(duì)“防溺水”安全知識(shí)的掌握情況,從七、八年級(jí)各隨機(jī)抽取50名學(xué)生進(jìn)行測(cè)試,并對(duì)成績(jī)(百分制)進(jìn)行整理、描述和分析.部分信息如下:
a.七年級(jí)成績(jī)頻數(shù)分布直方圖:
b.七年級(jí)成績(jī)?cè)?/span>這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級(jí)成績(jī)的平均數(shù)、中位數(shù)如下:
年級(jí) | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)在這次測(cè)試中,七年級(jí)在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測(cè)試中,七年級(jí)學(xué)生甲與八年級(jí)學(xué)生乙的成績(jī)都是78分,請(qǐng)判斷兩位學(xué)生在各自年級(jí)的排名誰(shuí)更靠前,并說(shuō)明理由;
(4)該校七年級(jí)學(xué)生有400人,假設(shè)全部參加此次測(cè)試,請(qǐng)估計(jì)七年級(jí)成績(jī)超過(guò)平均數(shù)76.9分的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com