【題目】現(xiàn)在很多家庭都使用折疊型西餐桌來節(jié)省空間,兩邊翻開后成圓形桌面(如圖1).餐桌兩邊ABCD平行且相等(如圖2),小華用皮帶尺量出AC2米,AB1米,那么桌面翻成圓桌后,桌子面積會增加_____平方米.(結(jié)果保留π

【答案】

【解析】

首先將圓形補(bǔ)全,設(shè)圓心為O,連接DO,過點(diǎn)OOEAD于點(diǎn)E,進(jìn)而得出AD,EO的長以及∠1,∠AOD的度數(shù),進(jìn)而得出S弓形AD面積=S扇形AOD-SAOD求出即可.

將圓形補(bǔ)全,設(shè)圓心為O,連接DO,過點(diǎn)OOEAD于點(diǎn)E,

由題意可得出:∠DAB=∠ABC90°,

AC2米,AB1米,

∴∠ACB30°

∵餐桌兩邊ABCD平行且相等,

∴∠C=∠130°

EOAOm,

AE×

AD,

∵∠1=∠D30°,

∴∠AOD120°,

S弓形AD面積

S扇形AODSAOD

××,

∴桌面翻成圓桌后,桌子面積會增加()平方米.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,,點(diǎn)是邊上一點(diǎn),于點(diǎn),點(diǎn)在射線上,且的比例中項.

1)如圖1,求證:;

2)如圖2,當(dāng)點(diǎn)在線段之間,聯(lián)結(jié),且互相垂直,求的長;

3)聯(lián)結(jié),如果與以點(diǎn)、為頂點(diǎn)所組成的三角形相似,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)平面xOy中,點(diǎn)A坐標(biāo)為,,ABx軸交于點(diǎn)C,那么ACBC的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L上有三個正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1 ,高為DE,在斜坡下的點(diǎn)C處測得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測得樓頂B的仰角為45°,其中A、CE在同一直線上.

1)求斜坡CD的高度DE;

2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ACCB,點(diǎn)E,F分別是ACBC上的點(diǎn),CEF的外接圓交AB于點(diǎn)Q,D

1)如圖1,若點(diǎn)DAB的中點(diǎn),求證:∠DEF=∠B

2)在(1)問的條件下:

①如圖2,連結(jié)CD,交EFH,AC4,若EHD為等腰三角形,求CF的長度.

②如圖2,AEDECF的面積之比是34,且ED3,求CEDECF的面積之比(直接寫出答案).

3)如圖3,連接CQCD,若AE+BFEF,求證:∠QCD45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=kx+1分別交x軸,y軸于點(diǎn)AB,交反比例函數(shù)y2=x0)的圖象于點(diǎn)C,CDy軸于點(diǎn)D,CEx軸于點(diǎn)ESOAB=1,=

1)點(diǎn)A的坐標(biāo)為______

2)求直線和反比例函數(shù)的解析式;

3)根據(jù)圖象直接回答:在第一象限內(nèi),當(dāng)x取何值時,y1≥y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 為了解蘇州市中學(xué)生的睡眠情況,應(yīng)該采用普查的方式

B. 某種彩票的中獎機(jī)會是,則買張這種彩票一定會中獎

C. 一組數(shù)據(jù),,,,的眾數(shù)和中位數(shù)都是

D. 若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,PB,C是⊙O上的四個點(diǎn),∠APC=CPB=60°.

1)判斷ABC的形狀,并證明你的結(jié)論;

2)若BC的長為6,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案