【題目】如圖,長(zhǎng)方形紙片 ABCD,ADBC,將長(zhǎng)方形紙片折疊, 使點(diǎn) D 與點(diǎn) B 重合,點(diǎn) C 落在點(diǎn) C'處,折痕為 EF

(1)求證:BE=BF

(2)ABE=18°,求BFE 的度數(shù).

(3) AB=4,AD=8,求 AE 的長(zhǎng).

【答案】(1)詳見(jiàn)解析;(2)57°;(3)3.

【解析】

(1)根據(jù)翻折變換的性質(zhì),結(jié)合矩形的性質(zhì)證明∠BEF=BFE,根據(jù)等腰三角形的判定即可得到結(jié)論;

(2)根據(jù)矩形的性質(zhì)及等腰三角形的性質(zhì)即可解決問(wèn)題;

(3)根據(jù)勾股定理列出關(guān)于線段 AE 的方程即可解決問(wèn)題;

解:(1)由題意得:∠BEF=DEF;

四邊形 ABCD 為矩形,

DEBF,

∴∠BFE=∠DEF,

∴∠BEF=∠BFE,

BE=BF;

(2)∵四邊形 ABCD 為矩形,

∴∠ABF=90°;而ABE=24°,

∴∠EBF=90°-24°=66° ;

BE=BF,

∴∠BFE ==57°;

(3)由題意知:BE=DE;

設(shè) E=x,則 BE=DE=8-x,

由勾股定理得:(8-x2=42+x2,解得:x=3.

AE 的長(zhǎng)為 3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班要在一面墻上同時(shí)展示數(shù)張形狀、大小均相同的矩形繪畫作品,將這些作品排成一個(gè)矩形(作品不完全重合),現(xiàn)需要在每張作品的四個(gè)角落都釘上圖釘,如果作品有角落相鄰,那么相鄰的角落共享一枚圖釘(例如,用9枚圖釘將4張作品釘在墻上,如圖),若有34枚圖釘可供選用,則最多可以展示繪畫作品( )

A. 16 B. 18 C. 20 D. 21

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABCD的坐標(biāo)分別為A(﹣10)、B0,2)、C4,2)、D3,0),點(diǎn)PAD邊上的一個(gè)動(dòng)點(diǎn),若點(diǎn)A關(guān)于BP的對(duì)稱點(diǎn)為A',則A'C的最小值為(  )

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E⊙O上.

1)若∠AOD=52°,求∠DEB的度數(shù);

2)若OC=3OA=5,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是矩形,點(diǎn)在線段的延長(zhǎng)線上,連接于點(diǎn),,點(diǎn)的中點(diǎn).若,,則的長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c的圖象與x軸交于點(diǎn)A(2,0)、B(﹣4,0),與y軸交于點(diǎn)D.

(1)求拋物線的解析式;

(2)連接BD,點(diǎn)P在拋物線的對(duì)稱軸上,以Q為平面內(nèi)一點(diǎn),四邊形PBQD能否成為矩形?若能,請(qǐng)求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由;

(3)在拋物線上有一點(diǎn)M,過(guò)點(diǎn)M、A的直線MA交y軸于點(diǎn)C,連接BC,若∠MBO=∠BCO,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測(cè)桿頂端點(diǎn)P的仰角是45°,向前走6 m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°30°,求該電線桿PQ的高度(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,B=45°,ACB=60°,AB=3,DBA延長(zhǎng)線上的一點(diǎn),且∠DACBOACD的外接圓.

(1)BC的長(zhǎng);

(2)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛(ài)哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問(wèn)題:

(1)此次共調(diào)查了多少人?

(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案