【題目】如圖,是兩個(gè)直角三角板,其中,,若將直角三角板繞點(diǎn)旋轉(zhuǎn)一周,則的最大值為_______________________

【答案】

【解析】

如圖,在CA取一點(diǎn)J,使得CJ=CB,連接DJ.利用全等三角形的性質(zhì)證明BE=DJ,推出|AD-BE|=|AD-DJ|≤AJ,求出AJ即可解決問題.

解:如圖,在CA取一點(diǎn)J,使得CJ=CB,連接DJ

RtACB中,AB=2,∠CAB=30°,∠ACB=90°,
CB=CJ=AB=1,AC=BC=,
∵∠ECD=BCJ=90°,
∴∠DCJ=ECB
CD=CE,CJ=CB
∴△DCJ≌△ECBSAS),
DJ=BE,
|AD-BE|=|AD-DJ|,
|AD-DJ|≤AJ,
|AD-BE|≤,
|AD-BE|的最大值為
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題呈現(xiàn):下圖是小明復(fù)習(xí)全等三角形時(shí)遇到的一個(gè)問題并引發(fā)的思考,請(qǐng)幫助小明完成以下學(xué)習(xí)任務(wù).

請(qǐng)根據(jù)小明的思路,結(jié)合圖①,寫出完整的證明過程.結(jié)論應(yīng)用:

1)如圖②,在四邊形中,的平分線和的平分線交于邊上點(diǎn).求證:;

2)在(1)的條件下,如圖③,若,.當(dāng)有一個(gè)內(nèi)角是時(shí),的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班班長(zhǎng)統(tǒng)計(jì)去年18書香校園活動(dòng)中全班同學(xué)的課外閱讀數(shù)量(單位:本),繪制了如圖折線統(tǒng)計(jì)圖,下列說法正確的是( )

A. 每月閱讀數(shù)量的平均數(shù)是50

B. 眾數(shù)是42

C. 中位數(shù)是58

D. 每月閱讀數(shù)量超過40的有4個(gè)月

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)、

(1)、滿足的關(guān)系式及的值.

(2)當(dāng)時(shí),若的函數(shù)值隨的增大而增大,求的取值范圍.

(3)如圖,當(dāng)時(shí),在拋物線上是否存在點(diǎn),使的面積為1?若存在,請(qǐng)求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的兩條對(duì)角線相交于點(diǎn)軸,垂足為點(diǎn)正比例函數(shù)的圖像與反比例函數(shù)的圖像相交于兩點(diǎn).

1)求正比例函數(shù)和反比例函數(shù)的解析式;

2)求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點(diǎn)在正方形的對(duì)角線上,垂足為點(diǎn),垂足為點(diǎn)

1)證明與推斷:

求證:四邊形是正方形;

推斷:的值為_ _

2)探究與證明:

將正方形繞點(diǎn)順時(shí)針方向旋轉(zhuǎn),如圖(2)所示,試探究線段之間的數(shù)量關(guān)系,并說明理由;

3)拓展與運(yùn)用:

,正方形在繞點(diǎn)旋轉(zhuǎn)過程中,當(dāng)三點(diǎn)在一條直線上時(shí),則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn).拋物線軸于兩點(diǎn),交軸于點(diǎn),直線經(jīng)過、兩點(diǎn).

1)求拋物線的解析式;

2)過點(diǎn)作直線軸交拋物線于另一點(diǎn),過點(diǎn)軸于點(diǎn),連接,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)全等的等腰直角三角形放置在平面直角坐標(biāo)系中,軸上,,,反比例函數(shù)的圖象經(jīng)過點(diǎn)

1)求反比例函數(shù)的解析式;

2)把沿射線移動(dòng),當(dāng)點(diǎn)落在圖象上的時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓是等邊的外接圓,延長(zhǎng),使,連交圓,點(diǎn)邊上,且,延長(zhǎng)至交

1)求證:;

2)求證:是圓的切線;

3)求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案