【題目】某商場一種商品的進價為每件30元,售價為每件40元,每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經(jīng)調(diào)査,若該商品每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤且盡快減少庫存,每件應降價多少元?
(3)在(2)的條件下,每件商品的售價為多少元時,每天可獲得最大利潤?最大利潤是多少元?
【答案】(1)10%;(2)2.5元;(3)512元.
【解析】
(1)設每次降價的百分率為x,(1-x)2為兩次降價的百分率,40降至32.4就是方程的平衡條件,列出方程求解即可;
(2)設每天要想獲得510元的利潤,且更有利于減少庫存,則每件商品應降價y元,由銷售問題的數(shù)量關系建立方程求出其解即可;
(3)設每件商品應降價y元,獲得利潤為W,根據(jù)題意得到函數(shù)解析式,即可得到最大值.
解:(1)設每次降價的百分率為x.
40×(1-x)2=32.4,
解得x=10%或190%(190%不符合題意,舍去).
答:該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,兩次下降的百分率為10%;
(2)設每天要想獲得510元的利潤,且更有利于減少庫存,則每件商品應降價y元,由題意,得
(40-30-y)(4×+48)=510, 解得:y1=1.5,y2=2.5,
∵有利于減少庫存,
∴y=2.5.
答:要使商場每月銷售這種商品的利潤達到510元,且更有利于減少庫存,則每件商品應降價2.5元;
(3)設每件商品應降價y元,獲得利潤為W, 由題意得,
W=(40-30-y)(4×+48)=-8y2+32y+480=-8(y-2)2+512,
故每件商品的售價為38元時,每天可獲得最大利潤,最大利潤是512元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點A在y軸上,點C在x軸上,BC⊥x軸,tan∠ACO=.延長AC到點D,過點D作DE⊥x軸于點G,且DG=GE,連接CE,反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B,和CE交于點F,且CF:FE=2:1.若△ABE面積為6,則點D的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)若正整數(shù)、,滿足,求、的值;
(2)已知如圖,在中,,,點在邊上移動(不與點,點重合),將沿著直線翻折,點落在射線上點處,當為一個含內(nèi)角的直角三角形時,試求的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=6,以AB為直徑在矩形內(nèi)作半圓,與DE相切于點E(如圖),延長DE交BC于F,若BF=,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=a(x+2)(x﹣6)(a>0)與x軸交于C,D兩點(點C在點D的左邊),與y軸負半軸交于點A.
(1)若△ACD的面積為16.
①求拋物線解析式;
②S為線段OD上一點,過S作x軸的垂線,交拋物線于點P,將線段SC,SP繞點S順時針旋轉任意相同的角到SC1,SP1的位置,使點C,P的對應點C1,P1都在x軸上方,C1C與P1S交于點M,P1P與x軸交于點N.求的最大值;
(2)如圖2,直線y=x﹣12a與x軸交于點B,點M在拋物線上,且滿足∠MAB=75°的點M有且只有兩個,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù) y=的圖象如圖所示,則二次函數(shù) y =ax 2-2x和一次函數(shù) y=bx+a 在同一平面直角坐標系中的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點D、E分別在AC、AB上,且AD=BE,連接BD、CE交于點P,在△ABC外部作∠ABF=∠ABD,過點A作AF⊥BF于點F,若∠ADB=∠ABF+90°,BF﹣AF=3,則BP=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com