【題目】1是太陽能熱水器裝置的示意圖,利用玻璃吸熱管可以把太陽能轉(zhuǎn)化為熱能,玻璃吸熱管與太陽光線垂直時,吸收太陽能的效果最好,假設(shè)某用戶要求根據(jù)本地區(qū)冬至正午時刻太陽光線與地面水平線的夾角(θ)確定玻璃吸熱管的傾斜角(太陽光線與玻璃吸熱管垂直),請完成以下計算:如圖2,AB⊥BC,垂足為點B,CD∥AB,F(xiàn)G⊥DE,垂足為點G,若∠θ=37°50′,F(xiàn)G=30cm,CD=10cm,求CF的長(結(jié)果取整數(shù),參考數(shù)據(jù):sin37°50′≈0.6l,cos37°50′≈079,tan37°50′≈0.78)

【答案】36.

【解析】

EPBC于點P,延長ED、BC交于點H,根據(jù)題意求得∠1=FHG=37°50′,先根據(jù)FG=30求得再根據(jù)CD=10求得繼而由CF=HF﹣HC可得答案.

如圖所示,過點EEPBC于點P,延長EDBC交于點H,

根據(jù)題意知∠θ=1=37°50′,

∵∠2=FGH=90°,

∴∠1=FHG=37°50′,

RtFGH中,∵FG=30cm,

ABCD,ABBC

DCBC,即∠DCH=90°,

∴在RtDCH中,

CF=HFHC=≈36cm).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BCAD⊥CD,∠BAD=60°,點M、N分別在ABAD邊上,若AMMB=ANND=12,則tan∠MCN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C=90°,AC=8,BC=6,角平分線AD、BE相交于點O,則四邊形OECD的面積為(  )

A.5B.C.D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校有一批復(fù)印任務(wù),原來由甲復(fù)印社承接,按每10040元計費.現(xiàn)乙復(fù)印社表示:若學(xué)校先按月付給一定數(shù)額的承包費,則可按每10015元收費.兩復(fù)印社每月收費情況如圖所示.根據(jù)圖象回答:

1)設(shè)兩家復(fù)印社每月復(fù)印任務(wù)為張,分別求出甲復(fù)印社的每月復(fù)印收費y甲(元)與乙復(fù)印社的每月復(fù)印收費y乙(元)與復(fù)印任務(wù)(張)之見的函數(shù)關(guān)系式.

2)乙復(fù)印社的每月承包費是多少?

3)當(dāng)每月復(fù)印多少頁時,兩復(fù)印社實際收費相同?

4)如果每月復(fù)印頁數(shù)是1200頁,那么應(yīng)選擇哪個復(fù)印社.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市為方便行人過馬路,打算修建一座高為4x(m)的過街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).

(1)請求出天橋總長和馬路寬度AB的比;

(2)若某人從A地出發(fā),橫過馬路直行(A→E→F→B)到達(dá)B地,平均速度是2.5m/s;返回時從天橋由BC→CD→DA到達(dá)A地,平均速度是1.5m/s,結(jié)果比去時多用了12.8s,請求出馬路寬度AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A90°,ABAC,點D,E分別在邊ABAC上,ADAE,連接DC,點M,P,N分別為DE,DC,BC的中點.

1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)探究證明

把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MNBD,CE,判斷△PMN的形狀,并說明理由;

3)拓展延伸

把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD4,AB10,請直接寫出△PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰直角三角形AOB中,已知AOOB,點P、D分別在ABOB上.

1)∠A=∠B   ;

2)如圖1中,若POPD,∠OPD45°,證明△BOP是等腰三角形;

3)如圖2中,若AB10,點PAB上移動,且滿足POPD,DEAB于點E,試問:此時PE的長度是否變化?若變化,說明理由;若不變,求出PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的菱形中,.連結(jié)對角線,以為邊作第二個菱形,使.連結(jié),再以為邊作第三個菱形,使,一按此規(guī)律所作的第個菱形的邊長是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018清明節(jié)前夕,宜賓某花店用1000元購進(jìn)若干菊花,很快售完,接著又用2500元購進(jìn)第二批

花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進(jìn)價比第一批的進(jìn)價多元.

(1)第一批花每束的進(jìn)價是多少元.

(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500不考慮其他因素,第二批每朵菊花的售價至少是多少元?

查看答案和解析>>

同步練習(xí)冊答案