【題目】如圖,邊長為的菱形中,.連結(jié)對角線,以為邊作第二個菱形,使.連結(jié),再以為邊作第三個菱形,使,一按此規(guī)律所作的第個菱形的邊長是__________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是太陽能熱水器裝置的示意圖,利用玻璃吸熱管可以把太陽能轉(zhuǎn)化為熱能,玻璃吸熱管與太陽光線垂直時,吸收太陽能的效果最好,假設(shè)某用戶要求根據(jù)本地區(qū)冬至正午時刻太陽光線與地面水平線的夾角(θ)確定玻璃吸熱管的傾斜角(太陽光線與玻璃吸熱管垂直),請完成以下計算:如圖2,AB⊥BC,垂足為點B,CD∥AB,F(xiàn)G⊥DE,垂足為點G,若∠θ=37°50′,F(xiàn)G=30cm,CD=10cm,求CF的長(結(jié)果取整數(shù),參考數(shù)據(jù):sin37°50′≈0.6l,cos37°50′≈079,tan37°50′≈0.78)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】講授“軸對稱”時,八年級教師設(shè)計了如下:四種教學(xué)方法:
① 教師講,學(xué)生聽
② 教師讓學(xué)生自己做
③ 教師引導(dǎo)學(xué)生畫圖發(fā)現(xiàn)規(guī)律
④ 教師讓學(xué)生對折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖
為調(diào)查教學(xué)效果,八年級教師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到全年級8個班420名同學(xué)手中,要求每位同學(xué)選出自己最喜歡的一種.他隨機(jī)抽取了60名學(xué)生的調(diào)查問卷,統(tǒng)計如圖
(1) 請將條形統(tǒng)計圖補(bǔ)充完整;
(2) 計算扇形統(tǒng)計圖中方法③的圓心角的度數(shù)是 ;
(3) 八年級同學(xué)中最喜歡的教學(xué)方法是哪一種?選擇這種教學(xué)方法的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,AB⊥BC,AD∥BC,點P為DC上一點,且AP=AB,過點C作CE⊥BP交直線BP于E.
(1) 若,求證:;
(2) 若AB=BC.
① 如圖2,當(dāng)點P與E重合時,求的值;
② 如圖3,設(shè)∠DAP的平分線AF交直線BP于F,當(dāng)CE=1,時,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖.對稱軸x=﹣1.下列結(jié)論:
①4ac﹣b2<0;②4a+c<2b;③3b+2c<0.
其中正確結(jié)論的個數(shù)是( 。
A. 3個 B. 2個 C. 1個 D. 0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢字的意識,我市舉辦了首屆“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(4)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、B分別在x軸、y軸上,線段OA、OB的長(OA<OB)是方程組的解,點C是直線與直線AB的交點,點D在線段OC上,OD=
(1)求點C的坐標(biāo);
(2)求直線AD的解析式;
(3)P是直線AD上的點,在平面內(nèi)是否存在點Q,使以O、A、P、Q為頂點的四邊形是菱形(鄰邊相等的平行四邊形)?若存在,請寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,將△ABC繞點A順時針旋轉(zhuǎn)一定角度(小于360°)得到△B′AC′.
(1)若點B′落在線段AC上,在圖中畫出△B′AC′,并直接寫出當(dāng)AC=4時,CC′的值;
(2)若∠ACB=20°,旋轉(zhuǎn)后,B′C′⊥AC,請直接寫出旋轉(zhuǎn)角的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com