【題目】如圖,正方形的邊長為2,連接,點(diǎn)是線段延長線上的一個(gè)動(dòng)點(diǎn),,點(diǎn)是與線段延長線的交點(diǎn),當(dāng)平分時(shí),______(填“>”“<”或“=”):當(dāng)不平分時(shí),__________.
【答案】= 8
【解析】
①先證明△ABP≌△CBQ,再證明△QBD≌△PBD,即可得出PD=QD;②證明△BQD∽△PBD,即可利用對(duì)應(yīng)邊成比例求得PD·QD.
解:①當(dāng)BD平分∠PBQ時(shí),
∠PBQ=45°,
∴∠QBD=∠PBD=22.5°,
∵四邊形ABCD是正方形,
∴AB=BC,∠A=∠C=90°,∠ABD=∠CBD=45°,
∴∠ABP=∠CBQ=22.5°+45°=67.5°,
在△ABP和△CBQ中,
∴△ABP≌△CBQ(ASA),
∴BP=BQ,
在△QBD和△PBD中,
∴△QBD≌△PBD(SAS),
∴PD=QD;
②當(dāng)BD不平分∠PBQ時(shí),
∵AB∥CQ,
∴∠ABQ=∠CQB,
∵∠QBD+∠DBP=∠QBD+∠ABQ=45°,
∴∠DBP=∠ABQ=∠CQB,
∵∠BDQ=∠ADQ+∠ADB=90°+45°=135°,∠BDP=∠CDP+∠BDC=90°+45°=135°,
∴∠BDQ=∠BDP,
∴△BQD∽△PBD,
∴,
∴PD·QD=BD2=22+22=8,
故答案為:=,8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,∠C=52°,BE為AC邊上的中線,AD平分∠BAC,交BC邊于點(diǎn)D,過點(diǎn)B作BF⊥AD,垂足為F,則∠EBF的度數(shù)為( )
A.19°B.33°C.34°D.43°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,OA=OB,函數(shù)的圖象與線段AB交于M點(diǎn),且AM=BM.
(1)求點(diǎn)M的坐標(biāo);
(2)求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=,cos∠ACH=,點(diǎn)B的坐標(biāo)為(4,n)
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個(gè)不透明的口袋中,分別有4個(gè)和3個(gè)大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上標(biāo)有數(shù)字0,1,2,3,乙口袋中的小球上分別標(biāo)有數(shù)字1,2,3,先從甲口袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字為,再從乙口袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字為.
(1)請(qǐng)用列表法或畫樹狀圖的方法表示出所有可能的結(jié)果;
(2)規(guī)定:若都是方程的解時(shí),則小明獲勝;若都不是方程的解時(shí),則小宇獲勝,問他們兩人誰獲勝的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形中,,.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿邊以每秒1個(gè)單位長度的速度運(yùn)動(dòng)到點(diǎn)時(shí)停止,連接,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接,,設(shè)運(yùn)動(dòng)時(shí)間為(秒).
(1)菱形對(duì)角線的長為 ;
(2)當(dāng)點(diǎn)恰在上時(shí),求t的值;
(3)當(dāng)時(shí),求的周長;
(4)直接寫出在整個(gè)運(yùn)動(dòng)過程中,點(diǎn)運(yùn)動(dòng)的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于()
A.B.C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),點(diǎn)P為斜邊OB上的一動(dòng)點(diǎn),則PA+PC的最小值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點(diǎn),N為邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE、CE,當(dāng)△CDE為等腰三角形時(shí),BN的長為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com