【題目】如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設(shè).
(1)求證:;
(2)如果點Q在線段AD上(與點A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)如果與相似,求BP的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=20cm,BC=15cm,動點P從點A出發(fā),以每秒4cm的速度沿AB方向運動,到達點B時停止運動.過點P作AB的垂線交斜邊AC于點E,將△APE繞點P順時針旋轉(zhuǎn)90°得到△DPF.設(shè)點P在邊AB上運動的時間為t(秒).
(1)當點F與點B重合時,求t的值;
(2)當△DPF與△ABC重疊部分的圖形為四邊形時,設(shè)此四邊形的面積為S,求S與t的函數(shù)關(guān)系式;
(3)若點M是DF的中點,當點M恰好在Rt△ABC的內(nèi)角角平分線上時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖A(﹣4,0),B(﹣1,3),以OA、OB為邊作OACB,經(jīng)過A點的一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于點C.
(1)求一次函數(shù)y=k1x+b的解析式;
(2)請根據(jù)圖象直接寫出在第二象限內(nèi),當k1x+b>時,自變量x的取值范圍;
(3)將OACB向上平移幾個單位長度,使點A落在反比例函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,且與軸交于點;點在反比例函數(shù)的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)請連結(jié),并求出的面積;
(3)直接寫出當時,的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,梯形ABCD,DC∥AB,對角線AC平分∠BCD,點E在邊CB的延長線上,EA⊥AC,垂足為點A.
(1)求證:B是EC的中點;
(2)分別延長CD、EA相交于點F,若AC2=DCEC,求證:AD:AF=AC:FC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,二次函數(shù)y=x2﹣2x+m(m>0)的對稱軸與比例系數(shù)為5的反比例函數(shù)圖象交于點A,與x軸交于點B,拋物線的圖象與y軸交于點C,且OC=3OB.
(1)求點A的坐標;
(2)求直線AC的表達式;
(3)點E是直線AC上一動點,點F在x軸上方的平面內(nèi),且使以A、B、E、F為頂點的四邊形是菱形,直接寫出點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC 中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB.設(shè)BE=a,DC=b,那么AB=_____.(用含a、b的式子表示AB)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某足球特色學校在商場購買甲、乙兩種品牌的足球.已知乙種足球比甲種足球每只貴20元,該校分別花費2000元、1400元購買甲、乙兩種足球,這樣購得甲種足球的數(shù)量是購得乙種足球數(shù)量的2倍,求甲、乙兩種足球的單價各是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點的坐標為,點的變換點的坐標定義如下:
當時,點的坐標為;當時,點的坐標為.
(1)點的變換點的坐標是 ;點的變換點為,連接,則 °;
(2)已知拋物線與軸交于點,(點在點的左側(cè)),頂點為.點在拋物線上,點的變換點為.若點恰好在拋物線的對稱軸上,且四邊形是菱形,求的值;
(3)若點是函數(shù)圖象上的一點,點的變換點為,連接,以為直徑作,的半徑為,請直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com