【題目】與三角形三個(gè)頂點(diǎn)距離相等的點(diǎn),是這個(gè)三角形的( )
A.三條中線的交點(diǎn)
B.三條角平分線的交點(diǎn)
C.三條高的交點(diǎn)
D.三邊的垂直平分線的交點(diǎn)
【答案】D
【解析】解:如圖:
∵OA=OB,∴O在線段AB的垂直平分線上,
∵OB=OC,∴O在線段BC的垂直平分線上,
∵OA=OC,∴O在線段AC的垂直平分線上,
又三個(gè)交點(diǎn)相交于一點(diǎn),
∴與三角形三個(gè)頂點(diǎn)距離相等的點(diǎn),是這個(gè)三角形的三邊的垂直平分線的交點(diǎn).
故選:D.
【考點(diǎn)精析】本題主要考查了線段垂直平分線的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形OABC的兩邊OA、OC分別落在x軸、y軸的正半軸上,等腰Rt△ADE的兩個(gè)頂點(diǎn)D、E和正方形頂點(diǎn)B三點(diǎn)在一條直線上.
(1)如圖1,連接OD,求證:△OAD≌△BAE;
(2)如圖2,連接CD,求證:BE﹣ DE= CD;
(3)如圖3,當(dāng)圖1中的Rt△ADE的頂點(diǎn)D與點(diǎn)B重合時(shí),點(diǎn)E正好落在x軸上,F(xiàn)為線段OC上一動(dòng)點(diǎn)(不與O、C重合),G為線段AF的中點(diǎn),若CG⊥GK交BE于點(diǎn)K時(shí),請(qǐng)問∠KCG的大小是否變化?若不變,請(qǐng)求其值;若改變,求出變化的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(4,-5)關(guān)于x軸對(duì)稱點(diǎn)的坐標(biāo)為( )
A.(4,5)
B.(-4,-5)
C.(-4,5)
D.(5,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD中有兩個(gè)動(dòng)點(diǎn)P、Q,點(diǎn)P從點(diǎn)B出發(fā)沿BD作勻速運(yùn)動(dòng),到達(dá)D點(diǎn)后停止;同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),沿折線BC→CD作勻速運(yùn)動(dòng),P、Q兩個(gè)點(diǎn)的速度都為每秒1個(gè)單位長(zhǎng)度,如果其中一點(diǎn)停止運(yùn)動(dòng),則另一點(diǎn)也停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為x秒,兩點(diǎn)之間的距離為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A.1的平方根是±1
B.2是8的立方根
C. 是2的一個(gè)平方根
D.﹣3是 的平方根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,將△ABC沿CB向右平移得到△DEF.若四邊形ABED的面積等于8,則平移距離等于( )
A.2
B.4
C.8
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程(m-6)x2-6x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則m滿足( )
A. m≥-3B. m>-3且m≠6C. m≥-3且m≠6D. m≠6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com