如圖,已知:△ABC為邊長是的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運動,當點C與點F重合時暫停運動,設△ABC的運動時間為t秒(t≥0).
(1)在整個運動過程中,設等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關系式;
(2)如圖2,當點A與點D重合時,作∠ABE的角平分線BM交AE于M點,將△ABM繞點A逆時針旋轉,使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點,使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
(3)如圖3,若四邊形DEFG為邊長為的正方形,△ABC的移動速度為每秒個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點從F點開始,沿折線FG﹣GD以每秒個單位長度開始移動,△ABC停止運動時,Q點也停止運動.設在運動過程中,DE交折線BA﹣AC于P點,則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.
(1)
(2)見解析
(3)見解析
【解析】
試題分析:(1)分兩種情況利用三角形的面積公式可以表示出時重疊部分的面積,當時用S△ABC﹣就可以求出重疊部分的面積.
(2)當點A與點D重合時,,再由條件可以求出AN的值,分三種情況討論求出EH的值,①AN=AH=4時,②AN=NH=4時,此時H點在線段AG的延長線上,③AH=NH時,此時H點為線段AG的中垂線與AG的交點,從而可以求出答案.
(3)再運動中當0≤t<2時,如圖2,△PEC∽△EFQ,可以提出t值;當2≤t≤4時,如圖3,△PEC∽△QDF,可以提出t值.
解:(1)當時,
當時,.
(2)當點A與點D重合時,,
∵BM平分∠ABE,
∴
∴ME=2,
∵∠ABM=∠BAM,
∴AM=BM=4,
∵△ABM≌△ACN,
∴∠CAN=30°,AN=4
①AN=AH=4時,,
②AN=NH=4時,此時H點在線段AG的延長線上,∴舍去,
③AH=NH時,此時H點為線段AG的中垂線與AG的交點,如圖1,
∴,
∴.
(3)當0≤t<2時,如圖2,△PEC∽△EFQ,
∴,
∴,
∴;
當2≤t≤4時,如圖3,△PEC∽△QDE,
∴,
∴,
∴
∴,
∴t1=4,.
點評:本題考查了求函數(shù)的解析式,正方形的性質,全等三角形的判定與性質,等腰三角形的性質,等邊三角形的性質,勾股定理的運用.
科目:初中數(shù)學 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com