A. | 1對 | B. | 2對 | C. | 3對 | D. | 4對 |
分析 首先利用SAS定理證明△ABD≌△ACD可得BD=CD,再利用SAS定理證明△ABE≌△ACE,然后再利用HL定理證明Rt△EBD≌Rt△ECD.
解答 解:如圖,
∵AB=AC,AD為△ABC的角平分線,
∴∠AEB=∠AEC=90°,∠BAE=∠CAE,
在△ABD和△ACD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAD}\\{AD=AD}\end{array}\right.$,
∴△ABD≌△ACD(SAS),
∴BD=CD,
在△ABE和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAE}\\{AE=AE}\end{array}\right.$,
∴△ABE≌△ACE(SAS),
在Rt△EBD和Rt△ECD中,
$\left\{\begin{array}{l}{ED=ED}\\{BD=CD}\end{array}\right.$,
∴Rt△EBD≌Rt△ECD(HL),
故圖中全等三角形的對數(shù)有3對.
故選:C.
點(diǎn)評 此題主要考查了全等三角形的判定,關(guān)鍵是掌握判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x≥-2 | B. | x≤-2 | C. | x>-2 | D. | x<-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3a<3b | B. | $-\frac{1}{3}$a>-$\frac{1}{3}$b | C. | a-3<b-3 | D. | a+1<b-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com