精英家教網 > 初中數學 > 題目詳情

【題目】課外活動時間,甲、乙、丙、丁4名同學相約進行羽毛球比賽.

(1)如果將4名同學隨機分成兩組進行對打,求恰好選中甲乙兩人對打的概率;

(2)如果確定由丁擔任裁判,用“手心、手背”的方法在另三人中競選兩人進行比賽.競選規(guī)則是:三人同時伸出“手心”或“手背”中的一種手勢,如果恰好只有兩人伸出的手勢相同,那么這兩人上場,否則重新競選.這三人伸出“手心”或“手背”都是隨機的,求一次競選就能確定甲、乙進行比賽的概率.

【答案】(1);(2)

【解析】分析:列舉出將4名同學隨機分成兩組進行對打所有可能的結果,找出甲乙兩人對打的情況數,根據概率公式計算即可.

畫樹狀圖寫出所有的情況,根據概率的求法計算概率.

詳解:(1)甲同學能和另一個同學對打的情況有三種:

(甲、乙),(甲、丙),(甲、。

則恰好選中甲乙兩人對打的概率為:

(2)樹狀圖如下:

一共有8種等可能的情況,其中能確定甲乙比賽的可能為(手心、手心、手背)、(手背、手背、手心)兩種情況,因此,一次競選就能確定甲、乙進行比賽的概率為.

點睛:考查概率的計算,明確概率的意義時解題的關鍵,概率等于所求情況數與總情況數的比.

型】解答
束】
22

【題目】為了“綠化環(huán)境,美化家園”,312日(植樹節(jié))上午8點,某校901、902班同學同時參加義務植樹.901班同學始終以同一速度種植樹苗種植樹苗的棵數y1與種植時間x(小時)的函數圖象如圖所示;902班同學開始以1小時種植40棵的速度工作了1.5小時后,因需更換工具而停下休息半小時,更換工具后種植速度提高至原來的1.5倍.

(1)902班同學上午11點時種植的樹苗棵數;

(2)分別求出901班種植數量y1、902班種植數量y2與種植時間x(小時)之間的函數關系式,并在所給坐標系上畫出y2關于x的函數圖象;

(3)已知購買樹苗不多于120棵時,每棵樹苗的價格是20元;購買樹苗超過120棵時,超過的部分每棵價格17元.若本次植樹所購樹苗的平均成本是18元,則兩班同學上午幾點可以共同完成本次植樹任務?

【答案】(1)120棵;(2)見解析;(3)兩班同學上午12點可以共同完成本次植樹任務.

【解析】分析:直接進行計算即可.

用待定系數法求一次函數解析式即可, 902班的要分成3.

x=2時,兩班同學共植樹150棵,平均成本:不符合題意;,x>2,兩班共植樹(105x-60)棵.列出方程 求解即可.

詳解:(1)902班同學上午11點時種植的樹苗棵數為:

(棵)

(2)由圖可知,y1是關于x的正比例函數,可設y1=k1x,經過(4,180),

代入可得

x≥0),

,

y2關于x的函數圖象如圖所示.

(3)當x=2時,兩班同學共植樹150棵,

平均成本:

所以,x>2,兩班共植樹(105x-60)棵.

由題意可得:

解得:x=4.

,

所以,兩班同學上午12點可以共同完成本次植樹任務.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在長方形中,厘米,厘米.動點出發(fā),以2厘米/秒的速度沿運動,到點停止運動;同時點點出發(fā),以4厘米/秒的速度沿運動,到點停止運動.點運動的時間為秒(.

1)點上運動時,____________(用含的代數式表示);點上運動時,______,______;(用含的代數式表示)

2)當為何值,;

3)當為何值時,、兩點在運動路線上相距的路程為4厘米;

4)當為何值時,.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】大熊山某農家樂為了抓住五一小長假的商機,決定購進AB兩種紀念品。若購進A種紀念品4件,B種紀念品3件,需要550元;若購進A種紀念品8件,B種紀念品5件,需要1050元。

1)求購進A、B兩種紀念品每件各需多少元。

2)若該農家樂決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該農家樂共有幾種進貨方案。

3)若銷售每件A種紀念品可獲利潤30元,每件B種紀念品可獲利潤20元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,M是線段AB上一點,AB16cmC,D兩點分別從M,B同時出發(fā),點C1cm/s的速度向點A運動,點D3cm/s的速度向點M運動當一點到達終點時,另一點也停止運動.

1)當AM6cm,點CD運動了2s時,求這時ACMD的數量關系;

2)若AM6cm,請你求出點C,D運動多少s時,點C,D的距離等于7cm;

3)若點C,D運動時,總有MD3AC,求AM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】由于各地霧霾天氣越來越嚴重,2018年春節(jié)前夕,安慶市政府號召市民,禁放煙花炮竹.學校向3000名學生發(fā)出“減少空氣污染,少放煙花爆竹”倡議書,并圍繞“A類:不放煙花爆竹;B類:少放煙花爆竹;C類:使用電子鞭炮;D類:不會減少煙花爆竹數量”四個選項進行問卷調查(單選),并將對100名學生的調查結果繪制成統(tǒng)計圖(如圖所示).根據抽樣結果,請估計全校“使用電子鞭炮”的學生有( )

A. 900 B. 1050 C. 600 D. 450

【答案】D

【解析】分析:用全校學生的人數乘以使用電子鞭炮的百分比即可求出答案.

詳解:100名學生中使用電子鞭炮的學生有人,使用電子鞭炮的百分比為:

全校使用電子鞭炮的學生有:.

故選D.

點睛:考查用樣本估計總體,從條形統(tǒng)計圖中得到使用電子鞭炮的學生人數是解題的關鍵.

型】單選題
束】
9

【題目】如圖,在ABCD中,EF分別為BC、AD的中點,AECF分別交BD于點M、N,則四邊形 AMCNABCD的面積比為( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知線段AB4.8cm,C是線段AB的中點,D是線段CB的中點,點EAB上,且CEAC,則DE的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了大力弘揚和踐行社會主義核心價值觀,某鄉(xiāng)鎮(zhèn)在一條公路旁的小山坡上,樹立一塊大型標語牌AB,如圖所示,標語牌底部B點到山腳C點的距離BC為20米,山坡的坡角為30°. 某同學在山腳的平地F處測量該標語牌的高,測得點C到測角儀EF的水平距離CF = 1.7米,同時測得標語牌頂部A點的仰角為45°,底部B點的仰角為20°,求標語牌AB的高度.(參考數值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,

【答案】標語牌AB的高度約為12.16

【解析】分析:解直角三角形求處CD的長度,則 然后在直角中即可求得的長,RtAGE中,求得的長,從而求得的高度..

詳解:RtBDC中, BC = 20米,

RtBGE中,

RtAGE,

答:標語牌AB的高度約為12.16

點睛:考查解直角三角形的應用,結合圖形利用三角函數解三角形即可.

型】解答
束】
20

【題目】已知ABO直徑,ACO的切線,BCO于點D(如圖1).

(1)若AB=2,∠B=30°,求CD的長;

(2) 取AC的中點E,連結DE(如圖2),求證:DEO相切.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖AB為⊙O的直徑,AE平分∠BAF,交⊙O于點E,過點E作直線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C

(1)求證:CD是⊙O的切線

(2)若CB=2,CE=4,求AE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為了開發(fā)利用海洋資源,某勘測飛機預測量一島嶼兩端A、B的距離,飛機在距海平面垂直高度為100米的點C處測得端點A的俯角為60°,然后沿著平行于AB的方向水平飛行了500米,在點D測得端點B的俯角為45°,求島嶼兩端A、B的距離.

查看答案和解析>>

同步練習冊答案