【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,連接OC交⊙O于E,過點A作AF⊥AC于F交⊙O于D,連接DE,BE,BD
(1)求證:∠C=∠BED;
(2)若AB=12,tan∠BED=,求CF的長.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)切線性質(zhì)、垂直的性質(zhì)、直角三角形的兩個銳角互余的性質(zhì)求得∠C+∠AOC=∠AOC+∠BAD=90°,即∠C=∠BAD;然后由圓周角定理推知∠BED=∠BAD;最后由等量代換得∠C=∠BED;
(2)根據(jù)銳角三角函數(shù)的定義求出AC,OC的長,求出AF長,則答案可求出.
(1)證明:∵AB是⊙O的直徑,CA切⊙O于A,
∴∠C+∠AOC=90°;
又∵OC⊥AD,
∴∠OFA=90°,
∴∠AOC+∠BAD=90°,
∴∠C=∠BAD.
又∵∠BED=∠BAD,
∴∠C=∠BED.
(2)解:由(1)知∠C=∠BAD,tan∠BED=,
∴tan∠C=,
∴tan∠C=,且OA=AB=6,
∴ ,解得AC=8,
∴,
根據(jù)∠OFA=∠OAC=90°,
∴OCAF=OAAC,
∴.
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】滿足下列條件的△ABC不是直角三角形的是( )
A.∠A:∠B:∠C=2:3:5B.∠A:∠B:∠C=3:4:5
C.∠A﹣∠B=∠CD.BC=3,AC=4,AB=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點 E,F(xiàn),G,H 分別是任意四邊形 ABCD 中 AD,BD,CA,BC 的中點. 若四邊形 EFGH 是菱形,則四邊形 ABCD 的邊需滿足的條件是( )
A. AB∥DC B. AC=BD C. AC⊥BD D. AB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的頂點A,C分別在y軸和x軸上,邊BC的中點F在y軸上,若反比例函數(shù)y=的圖象恰好經(jīng)過CD的中點E,則OA的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖直線與x軸、y軸分別交于點A,B,C是的中點,點D在直線上,以為直徑的圓與直線的另一交點為E,交y軸于點F,G,已知,,則的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進(jìn)價每個為10元,當(dāng)售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:
(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個)與售價x(元)之間的函數(shù)關(guān)系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應(yīng)定為多少?
(3)當(dāng)售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 y=﹣x2+bx+c 與 x 軸交于 A、B 兩點,與 y 軸交于點 C ,點 A 的坐標(biāo)為(-1,0),點 C 的坐標(biāo)為(0,3),點D和點 C 關(guān)于拋物線的對稱軸對稱,直線 AD 與 y 軸交于點 E .
(1)求拋物線的解析式;
(2)如圖,直線 AD 上方的拋物線上有一點 F,過點 F 作 FG⊥AD 于點 G,作 FH 平行于 x 軸交直線 AD 于點 H,求△FGH 周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關(guān)系,且在溫度達(dá)到30℃時,電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求R和t之間的關(guān)系式;
(2)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過4kΩ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2過定點M(,),與直線AB:y=kx+1相交于A、B兩點.
(1)若k=﹣,求△ABO的面積.
(2)若k=﹣,在拋物線上的點P,使得△ABP的面積是△ABO面積的兩倍,求P點坐標(biāo).
(3)將拋物線向右平移兩個單位,再向下平移兩個單位,得到拋物線C2,如題圖2,直線y=kx﹣2(k+)與拋物線C2的對稱軸交點為G,與拋物線C2的交點為P、Q兩點(點P在點Q的左側(cè)),試探究是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com