【題目】在正方形網(wǎng)格中,△ABC各頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、C的坐標(biāo)分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A2B2C2;
(3)點(diǎn)C1的坐標(biāo)是 ;點(diǎn)C2的坐標(biāo)是 .
【答案】圖形見(jiàn)解析
【解析】
試題分析:(1)找出對(duì)稱點(diǎn)A1、B1、C1,連點(diǎn)成線即可得出結(jié)論;
(2)找出對(duì)稱點(diǎn)A2、B2、C2,連點(diǎn)成線即可得出結(jié)論;
(3)根據(jù)點(diǎn)C的坐標(biāo),結(jié)合對(duì)稱點(diǎn)的特點(diǎn)即可找出點(diǎn)C1、C2的坐標(biāo),此題得解.
試題解析:(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,如圖1所示.
(2)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A2B2C2,如圖2所示.
(3)∵點(diǎn)C的坐標(biāo)為(﹣1,4),
∴點(diǎn)C1的坐標(biāo)是(1,4);點(diǎn)C2的坐標(biāo)是(﹣1,﹣4).
故答案為:(1,4);(﹣1,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生利用雙休時(shí)間去距學(xué)校10km的炎帝故里參觀,一部分學(xué)生騎自行車(chē)先走,過(guò)了20min后,其余學(xué)生乘汽車(chē)沿相同路線出發(fā),結(jié)果他們同時(shí)到達(dá)。已知汽車(chē)的速度是騎車(chē)學(xué)生速度的2倍,求騎車(chē)學(xué)生的速度和汽車(chē)的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】向東行進(jìn)-50m表示的意義是( 。
A.向東行進(jìn)50m
B.向西行進(jìn)50m
C.向南行進(jìn)50m
D.向北行進(jìn)50m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣2kx+k2+k﹣2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若k為正整數(shù),求k的值及此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OE平分∠AOC,OF平分∠BOC
(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度數(shù).
(2)若∠AOC=x°,∠EOF=y°,∠BOC=60°,請(qǐng)用x 的代數(shù)式來(lái)表示y.(直接寫(xiě)出結(jié)果就行).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,將直線l向右平移1個(gè)單位長(zhǎng)度得到的直線解析式是y=2x+2,則原來(lái)的直線解析式是( )
A. y=3x+2 B. y=2x+4 C. y=2x+1 D. y=2x+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB⊥BC,DC⊥BC,B、C分別是垂足,DE交AC于M,BC=CD,AB=EC,DE與AC有什么關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,AC與BD相交于O點(diǎn),OC=OA,若E是CD上任意一點(diǎn),連接BE交AC于點(diǎn)F,連接DF.
(1)證明:△CBF≌△CDF;
(2)若AC=2,BD=2,求四邊形ABCD的周長(zhǎng);
(3)請(qǐng)你添加一個(gè)條件,使得∠EFD=∠BAD,并予以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com