【題目】如圖,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜邊為一邊向右上方作正方形ABDE,連接CD,則CD的長為_____.
【答案】
【解析】
過D作DG⊥CB交CB的延長線于G,根據(jù)正方形的性質(zhì)得到AB=BD,∠ABD=90°,根據(jù)余角的性質(zhì)得到∠CAB=∠DBG,根據(jù)全等三角形的性質(zhì)得到BG=AC=2,DG=BC=1,根據(jù)勾股定理即可得到結(jié)論.
如圖所示:過D作DG⊥CB交CB的延長線于G,
∵四邊形ABDE是正方形,
∴AB=BD,∠ABD=90°,
∵∠ACB=∠DGB=90°,
∴∠ABC+∠BAC=∠ABC+∠DBG=90°,
∴∠CAB=∠DBG,
在△ABC和△BDG中
,
∴△ABC≌△BDG(AAS),
∴BG=AC=2,DG=BC=1,
∴CD===.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,若BF=12,AB=10,則AE的長為( 。
A. 13B. 14C. 15D. 16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某市郊景區(qū)內(nèi)一條筆直的公路經(jīng)過、兩個景點,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點,經(jīng)測量景點位于景點的北偏東方向,位于景點的正北方向,且景點位于景點的北偏東方向,景點與景點距離為.
求景點與景點的距離;
為方便游客到景點游玩,景區(qū)管委會準備由景點向公路修建一條距離最短的公路,不考慮其它因素,求出這條公路的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)CD:與一次函數(shù)AB:,都經(jīng)過點B(-1,4).
(1)求兩條直線的解析式;
(2)求四邊形ABDO的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P為∠MON的平分線上一點,以P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,如果∠APB繞點P旋轉(zhuǎn)時始終滿足OAOB=OP2,我們就把∠APB叫做∠MON的智慧角.
(1)如圖2,已知∠MON=90°,點P為∠MON的平分線上一點,以P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,且∠APB=135°.求證:∠APB是∠MON的智慧角.
(2)如圖1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,連結(jié)AB,用含α的式子表示∠APB的度數(shù).
(3)如圖3,C是函數(shù) 圖象上的一個動點,過C的直線CD分別交x軸和y軸于A,B兩點,且滿足BC=2CA,請求出∠AOB的智慧角∠APB的頂點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,是關(guān)于的方程的兩實根,實數(shù)、、、的大小關(guān)系可能是( )
A. α<a<b<β B. a<α<β<b C. a<α<b<β D. α<a<β<b
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃建一間多功能數(shù)學實驗室,將采購兩類桌椅:A類是三角形桌,每桌可坐3人,B類是五邊形桌,每桌可坐5人.學校擬選擇甲、乙兩家公司中的一家來采購,兩家公司的標價均相同,且規(guī)定兩類桌椅均只能在同一家公司采購.甲公司對兩類桌椅均是以標價出售;乙公司對A類桌椅漲價20%、B類桌椅降價20%出售.經(jīng)咨詢,兩家公司給出的數(shù)量和費用如下表:
A類桌椅(套) | B類桌椅(套) | 總費用(元) | |
甲公司 | 6 | 5 | 1900 |
乙公司 | 3 | 7 | 1660 |
(1)求第一次購買時,A、B兩類桌椅每套的價格分別是多少?
(2)如果該數(shù)學實驗室需設(shè)置48個座位,學校到甲公司采購,應(yīng)分別采購A、B兩類桌椅各多少套時所需費用最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是反比例函數(shù)上第一象限上一個動點,點A、點B為坐標軸上的點,A(0,k),B(k,0).已知△OAB的面積為.
(1)求k的值;
(2)連接PA、PB、AB,設(shè)△PAB的面積為S,點P的橫坐標為t.請直接寫出S與t的函數(shù)關(guān)系式;
(3)閱讀下面的材料回答問題:
當a>0時,
∵≥0,∴≥2,即≥2
由此可知:當=0時,即a=1時,取得最小值2.
問題:請你根據(jù)上述材料探索(2)中△PAB的面積S有沒有最小值?若有,請直接寫出S的最小值;若沒有,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com