【題目】如圖,點(diǎn)O在的邊上,以為半徑作,的平分線交于點(diǎn)D,過(guò)點(diǎn)D作于點(diǎn)E.
(1)尺規(guī)作圖(不寫(xiě)作法,保留作圖痕跡),補(bǔ)全圖形;
(2)判斷與交點(diǎn)的個(gè)數(shù),并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)與有1個(gè)交點(diǎn),理由見(jiàn)解析
【解析】
(1)根據(jù)已知圓心和半徑作圓、作已知角的平分線、過(guò)直線外一點(diǎn)作已知直線的垂線的尺規(guī)作圖的步驟作圖即可;
(2)連接OD,由OB=OD,得到∠1=∠2,再由角平分線得出∠1=∠3,等量代換進(jìn)而證出OD∥BA,根據(jù)兩直線平行同旁內(nèi)角互補(bǔ),得到∠ODE=90°,由此得出OD是的切線,即與有1個(gè)交點(diǎn).
解:(1)如下圖,補(bǔ)全圖形:
(2)如下圖,連接OD,
∵點(diǎn)D在上,
∴OB=OD,
∴∠1=∠2,
又∵BM平分,
∴∠1=∠3,
∴∠2=∠3,
∴OD∥BA,
∴∠ODE+∠BED=180°,
∵
∴∠ODE=90°,
∴ED是的切線,
∴與有1個(gè)交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸相交于、,交軸于點(diǎn),點(diǎn)拋物線的頂點(diǎn),對(duì)稱軸與軸交于點(diǎn).
⑴.求拋物線的解析式;
⑵.如圖1,連接,點(diǎn)是線段上方拋物線上的一動(dòng)點(diǎn),于點(diǎn);過(guò)點(diǎn)作軸于點(diǎn),交于點(diǎn).點(diǎn)是軸上一動(dòng)點(diǎn),當(dāng) 取最大值時(shí).
①.求的最小值;
②.如圖2,點(diǎn)是軸上一動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,∠ABD=60°,點(diǎn)E從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿邊AB運(yùn)動(dòng),到點(diǎn)B停止運(yùn)動(dòng).過(guò)點(diǎn)E作EF∥BD交AD于點(diǎn)F,將△AEF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)得到△GEH,且點(diǎn)G落在線段EF上,設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒)(0<t<3).
(1)若t=1,求△GEH的面積;
(2)若點(diǎn)G在∠ABD的平分線上,求BE的長(zhǎng);
(3)設(shè)△GEH與△ABD重疊部分的面積為T,用含t的式子表示T,并直接寫(xiě)出當(dāng)0<t<3時(shí)T的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l與反比例函數(shù)y=(k≠0)的圖象在第二象限交于B、C兩點(diǎn),與x軸交于點(diǎn)A,連接OC,∠ACO的角平分線交x軸于點(diǎn)D.若AB:BC:CO=1:2:2,△COD的面積為6,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在整數(shù)的除法運(yùn)算中,只有能整除與不能整除兩種情況,當(dāng)不能整除時(shí),就會(huì)產(chǎn)生余數(shù),現(xiàn)在我們利用整數(shù)的除法運(yùn)算來(lái)研究一種數(shù)——“差一數(shù)”.
定義:對(duì)于一個(gè)自然數(shù),如果這個(gè)數(shù)除以5余數(shù)為4,且除以3余數(shù)為2,則稱這個(gè)數(shù)為“差一數(shù)”.
例如:,,所以14是“差一數(shù)”;
,但,所以19不是“差一數(shù)”.
(1)判斷49和74是否為“差一數(shù)”?請(qǐng)說(shuō)明理由;
(2)求大于300且小于400的所有“差一數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)(閱讀與證明)
如圖1,在正的外角內(nèi)引射線,作點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E(點(diǎn)E在內(nèi)),連接,、分別交于點(diǎn)F、G.
①完成證明:點(diǎn)E是點(diǎn)C關(guān)于的對(duì)稱點(diǎn),
,,.
正中,,,
,得.
在中,,______.
在中,,______.
②求證:.
(2)(類比與探究)
把(1)中的“正”改為“正方形”,其余條件不變,如圖2.類比探究,可得:
①______;
②線段、、之間存在數(shù)量關(guān)系___________.
(3)(歸納與拓展)
如圖3,點(diǎn)A在射線上,,,在內(nèi)引射線,作點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E(點(diǎn)E在內(nèi)),連接,、分別交于點(diǎn)F、G.則線段、、之間的數(shù)量關(guān)系為_(kāi)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠B=45°,BC=4,BC邊上的高AD=1,點(diǎn)P1、Q1、H1分別在邊AD、AC、CD上,且四邊形P1Q1H1D為正方形,點(diǎn)P2、Q2、H2分別在邊Q1H1、CQ1、CH1上,且四邊形P2Q2H2H1為正方形,…,按此規(guī)律操作下去,則線段CQ2020的長(zhǎng)度為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義一種對(duì)正整數(shù)n的“F”運(yùn)算:①當(dāng)n為奇數(shù)時(shí),F(n)=3n+1;②當(dāng)n為偶數(shù)時(shí),F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行,例如,取n=24,則:若n=13,則第2020次“F”運(yùn)算的結(jié)果是( 。
A.1B.4C.2020D.42020
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“安全教育”是學(xué)校必須開(kāi)展的一項(xiàng)重要工作.某校為了了解家長(zhǎng)和學(xué)生參與“暑期安全知識(shí)學(xué)習(xí)”的情況,進(jìn)行了網(wǎng)上測(cè)試,并在本校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查.若把參與測(cè)試的情況分為類情形:.僅學(xué)生自己參與;.家長(zhǎng)和學(xué)生一起參與;.僅家長(zhǎng)自己參與;.家長(zhǎng)和學(xué)生都未參與.根據(jù)調(diào)查情況,繪制了以下不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
在這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中類所對(duì)應(yīng)扇形的圓心角的度數(shù);
根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校名學(xué)生中“家長(zhǎng)和學(xué)生都未參與”的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com