【題目】如圖,AB為⊙O的直徑,ED切⊙O于點(diǎn)C,AD交⊙O于點(diǎn)F,連接AC,BF,且BF∥CD.
(1)求證:AC平分∠BAD;
(2)若⊙O的半徑為,AF=2,求CD的長(zhǎng)度.
【答案】(1)證明見(jiàn)解析;(2)4.
【解析】
(1)連接OC,交BF于點(diǎn)H,由ED切⊙O于點(diǎn)C,可得OC⊥DE,因?yàn)?/span>AB為⊙O的直徑,可得BF⊥AD,由BF∥CD,可得ED⊥AD,進(jìn)而得出OC∥AD,即可推出AC平分∠BAD;
(2)在Rt△ABF中,⊙O的半徑為,AF=2,可求得BF的長(zhǎng),再證明四邊形HFDC為矩形,可得CD=HF=BF,即可得出CD的長(zhǎng).
(1)如圖,連接OC,交BF于點(diǎn)H,
∵ED切⊙O于點(diǎn)C,
∴OC⊥DE,
∵AB為⊙O的直徑,
∴BF⊥AD,
∵BF∥CD,
∴ED⊥AD,
∴OC∥AD,
∴∠OCA=∠CAD,
∵OC=OA,
∴∠OCA=∠OAC,
∴∠OAC=∠CAD,
∴AC平分∠BAD;
(2)∵⊙O的半徑為,AF=2,∠AFB=90°,
∴
由(1)知,∠D=∠HFD=∠OCD=90°,
∴四邊形HFDC為矩形,
∴OC⊥BF,
∴CD=HF=BF=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將放在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)動(dòng)點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同一時(shí)間,動(dòng)點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)作,交于點(diǎn),連接,設(shè)運(yùn)動(dòng)時(shí)間為秒(t.
(Ⅰ)用含的代數(shù)式表示;
(Ⅱ)①是否存在的值,使四邊形為平行四邊形?若存在,求出的值;若不存在,說(shuō)明理由;
②是否存在的值,使四邊形為菱形?若存在,求出的值;若不存在,說(shuō)明理由.
(Ⅲ)在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線段的中點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng).(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ABC=45°,∠C=60°,⊙O經(jīng)過(guò)點(diǎn)A,B,與BC交于點(diǎn)D,連接AD.
(Ⅰ)如圖①.若AB是⊙O的直徑,交AC于點(diǎn)E,連接DE,求∠ADE的大。
(Ⅱ)如圖②,若⊙O與AC相切,求∠ADC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問(wèn)題:
(1)a= ,b= ,c= ;
(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為 度;
(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是矩形ABCD的一條對(duì)角線,E是AC中點(diǎn),連接BE,再分別以A,D為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)F,連接EF交AD于點(diǎn)G.若AB=3,BC=4,則四邊形ABEG的周長(zhǎng)為( )
A. 8B. 8.5C. 9D. 9.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)請(qǐng)用直尺和圓規(guī)作∠ABC的平分線,交AC于點(diǎn)D(保留作圖痕跡,不要求寫(xiě)作法和證明);
(2)在(1)作出的圖形中,若∠A=30°,BC=,則點(diǎn)D到AB的距離等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育用品商店用4000元購(gòu)進(jìn)一批足球,全部售完后,又用3600元再次購(gòu)進(jìn)同樣的足球,但這次每個(gè)足球的進(jìn)價(jià)是第一次進(jìn)價(jià)的1.2倍,且數(shù)量比第一次少了10個(gè).
(1)求第一次每個(gè)足球的進(jìn)價(jià)是多少元?
(2)若第二次進(jìn)貨后按150元/個(gè)的價(jià)格銷(xiāo)售,當(dāng)售出10個(gè)后,根據(jù)市場(chǎng)情況,商店決定對(duì)剩余的足球全部按同一標(biāo)準(zhǔn)一次性打折售完,但要求這次的利潤(rùn)不少于450元,問(wèn)該商店最低可打幾折銷(xiāo)售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過(guò)點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.
(1)求∠CDE的度數(shù);
(2)求證:DF是⊙O的切線;
(3)若AC=2DE,求tan∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半圓弧中,直徑cm,點(diǎn)是上一點(diǎn),cm,為上一動(dòng)點(diǎn),交于點(diǎn),連接和,設(shè)、兩點(diǎn)間的距離為cm,、兩點(diǎn)間的距離為cm,、兩點(diǎn)間的距離為cm.小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)、隨自變量的變化而變化的規(guī)律進(jìn)行了探究:
下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了,與的幾組對(duì)應(yīng)值;
/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.45 | 3.46 | 4.90 | 5.48 | 6 | |
y2/cm | 4 | 3.74 | 3.46 | 3.16 | 2.83 | 2.45 | 2 |
(2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(,),(,),并畫(huà)出函數(shù),的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:①當(dāng)時(shí),線段的取值范圍是 ;②當(dāng)是等腰三角形時(shí),線段AP的長(zhǎng)約為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com