【題目】已知:在△ABC中,AB=ACDBC的中點,動點E在邊AB上(點E不與點A,B重合), 動點F在射線AC上,連結(jié)DE, DF.

(1)如圖1,當∠DEB=DFC=90°時,直接寫出DEDF的數(shù)量關(guān)系;

(2)如圖2,當∠DEB+DFC=180°(DEB≠DFC)時,猜想DEDF的數(shù)量關(guān)系,并證明;

(3)當點E,D,F在同一條直線上時,

①依題意補全圖3

②在點E運動的過程中,是否存在EB=FC? 存在不存在.

【答案】1DE=DF;(2DE=DF;證明見解析;(3)①見解析,②不存在

【解析】

1)證明△BED≌△CFD,利用全等三角形的對應(yīng)邊相等即可得出結(jié)論;

2)連接AD,作DGAB于點G,DHAC于點H,根據(jù)同角的補角相等,得出∠GED=DFC,根據(jù)等腰三角形三線合一的性質(zhì)得到∠BAD=CAD,再根據(jù)角平分線的性質(zhì)得出DG=DH,即可證明EGDFHD,從而得出結(jié)論;

3)①根據(jù)題意補全圖形即可;

②假設(shè)BE=CF.過EEGACBCG.證明△EGD≌△FCD,得到GD=CD,進而得到GB重合.由BEAC相交于點A,與EGAC矛盾,得出BE=CF不成立,從而得到結(jié)論.

1DEDF的數(shù)量關(guān)系是DE=DF.理由如下:

AB=AC,∴∠B=C

DBC的中點,∴BD=CD

在△BED和△CFD中,∵∠B=C,∠DEB=DFC=90°,BD=CD,

∴△BED≌△CFDAAS),

DE=DF

2)猜想:DEDF的數(shù)量關(guān)系是DE=DF.理由如下:

連接AD,作DGAB于點G,DHAC于點H,

∴∠EGD=FHD=90°.

∵∠DEB+GED=180°,

DEB+DFC=180°

∴∠GED=DFC

AB=ACDBC的中點,

∴∠BAD=CAD

DGAB,DHAC,

DG=DH

EGDFHD中,

,

EGDFHD,

DE=DF

3)①作圖如下:

②不存在.理由如下:

假設(shè)BE=CF.過EEGACBCG

EGAC,∴∠EGB=ACB,∠EGD=FCD

AB=AC,∴∠B=ACB,

∴∠B=EGB,

BE=EG

BE=CF

EG=CF

在△EGD和△FCD中,

∵∠EGD=FCD,∠EDG=FDC,EG=FC,

∴△EGD≌△FCD,

GD=CD

BD=CD,

BD=GD,

GB重合.

BEAC相交于點A,與EGAC矛盾,

BE=CF不成立,

∴在點E運動的過程中,不存在EB=FC

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣4x+3.

(1)用配方法將此二次函數(shù)化為頂點式;

(2)求出它的頂點坐標和對稱軸;

(3)求出二次函數(shù)的圖象與x軸的兩個交點坐標;

(4)在所給的坐標系上,畫出這個二次函數(shù)的圖象;

(5)觀察圖象填空,使yx的增大而減小的x的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設(shè)PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知yx 的函數(shù),自變量x的取值范圍是x >0,下表是yx 的幾組對應(yīng)值.

x

···

1

2

3

5

7

9

···

y

···

1.98

3.95

2.63

1.58

1.13

0.88

···

小騰根據(jù)學習一次函數(shù)的經(jīng)驗,利用上述表格所反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.

下面是小騰的探究過程,請補充完整:

(1)如圖,在平面直角坐標系中,描出了以上表中各對對應(yīng)值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(2)根據(jù)畫出的函數(shù)圖象,寫出:

x=4對應(yīng)的函數(shù)值y約為________;

該函數(shù)的一條性質(zhì):__________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若一個三角形中,其中有一個內(nèi)角是另外一個內(nèi)角的一半,則這樣的三角形叫做半角三角形”. 例如:等腰直角三角形就是半角三角形”.在鈍角三角形中,,,,過點的直線邊于點.點在直線上,且

1)若,點延長線上.

,點恰好為中點時,依據(jù)題意補全圖1.請寫出圖中的一個半角三角形_______;

如圖2,若,圖中是否存在半角三角形除外),若存在,請寫出圖中的半角三角形,并證明;若不存在,請說明理由;

2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請直接寫出,, 滿足的數(shù)量關(guān)系:______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù),、為常數(shù))的圖象如圖所示,下列個結(jié)論:①;;;;為常數(shù),且.其中正確的結(jié)論有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在直線l上,點B在直線l外,點B關(guān)于直線l的對稱點為C,連接AC,過點BBDAC于點D,延長BDE使BE=AB,連接AE并延長與BC的延長線交于點F.

1)補全圖形;

2)若∠BAC=2α,求出∠AEB的大。ㄓ煤α的式子表示);

3)用等式表示線段EFBC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃從商店購進兩種商品,購買一個商品比購買一個商品多花10元,并且花費300元購買商品和花費100元購買商品的數(shù)量相等.

1)求購買一個商品和一個商品各需要多少元;

2)根據(jù)學校實際情況,該學校需要購買種商品的個數(shù)是購買種商品個數(shù)的3倍,還多11個,經(jīng)與商店洽談,商店決定在該學校購買種商品時給予八折優(yōu)惠,如果該學校本次購買兩種商品的總費用不超過1000元,那么該學校最多可購買多少個種商品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰中,BC邊上的高,且,則等腰底角的度數(shù)為__________.

查看答案和解析>>

同步練習冊答案