【題目】某學(xué)校計劃從商店購進(jìn)兩種商品,購買一個商品比購買一個商品多花10元,并且花費(fèi)300元購買商品和花費(fèi)100元購買商品的數(shù)量相等.

1)求購買一個商品和一個商品各需要多少元;

2)根據(jù)學(xué)校實際情況,該學(xué)校需要購買種商品的個數(shù)是購買種商品個數(shù)的3倍,還多11個,經(jīng)與商店洽談,商店決定在該學(xué)校購買種商品時給予八折優(yōu)惠,如果該學(xué)校本次購買兩種商品的總費(fèi)用不超過1000元,那么該學(xué)校最多可購買多少個種商品?

【答案】1)購買一個商品需要15元,一個商品5.2)該學(xué)校最多可購買35種商品.

【解析】

1)首先設(shè)購買一個商品需要元,則購買一個商品需要元,然后根據(jù)題意列出方程,求解即可;

2)首先設(shè)該學(xué)?少徺I種商品,然后根據(jù)題意列出一元一次不等式,求解即可.

1)設(shè)購買一個商品需要元,則購買一個商品需要

由題意知:

解得:

經(jīng)檢驗是原分式方程的解,且符合題意

答:購買一個商品需要15元,一個商品5.

2)設(shè)該學(xué)?少徺I種商品

依題意有,

解得

故該學(xué)校最多可購買35種商品.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰的兩腰上分別取點(diǎn),使,此時恰有,則的度數(shù)是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,AB=ACDBC的中點(diǎn),動點(diǎn)E在邊AB上(點(diǎn)E不與點(diǎn)AB重合), 動點(diǎn)F在射線AC上,連結(jié)DE, DF.

(1)如圖1,當(dāng)∠DEB=DFC=90°時,直接寫出DEDF的數(shù)量關(guān)系;

(2)如圖2,當(dāng)∠DEB+DFC=180°(DEB≠DFC)時,猜想DEDF的數(shù)量關(guān)系,并證明;

(3)當(dāng)點(diǎn)E,D,F在同一條直線上時,

①依題意補(bǔ)全圖3;

②在點(diǎn)E運(yùn)動的過程中,是否存在EB=FC? 存在不存在.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將線段繞點(diǎn)逆時針旋轉(zhuǎn)角度得到線段,連接,又將線段繞點(diǎn)逆時針旋轉(zhuǎn)得線段(如圖①).

的大小(結(jié)果用含的式子表示);

又將線段繞點(diǎn)順時針旋轉(zhuǎn)得線段,連接(如圖)求;

連接、,試探究當(dāng)為何值時,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一塊含有角的三角板放置在一條直線上,邊與直線重合,邊的垂直平分線與邊分別交于兩點(diǎn),連接.

(1) 三角形;

(2)直線上有一動點(diǎn)(不與點(diǎn)重合) ,連接并把繞點(diǎn)順時針旋轉(zhuǎn),連接.當(dāng)點(diǎn)在圖2所示的位置時,證明.我們可以用來證明,從而得到.當(dāng)點(diǎn)移動到圖3所示的位置時,結(jié)論是否依然成立?若成立,請你寫出證明過程;若不成立,請你說明理由.

(3)當(dāng)點(diǎn)邊上移動時(不與點(diǎn)重合)周長的最小值是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=60°,點(diǎn)P是∠AOB內(nèi)的定點(diǎn)且OP=,若點(diǎn)M、N分別是射線OA、OB上異于點(diǎn)O的動點(diǎn),則PMN周長的最小值是( 。

A. B. C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李先生參加了清華同方電腦公司推出的分期付款購買電腦活動,他購買的電腦價格為萬元,交了首付之后每月付款元,月結(jié)清余款.的函數(shù)關(guān)系如圖所示,試根據(jù)圖象提供的信息回答下列問題.

確定的函數(shù)關(guān)系式,并求出首付款的數(shù)目;

如打算每月付款不超過元,李先生至少幾個月才能結(jié)清余款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)方法解下列方程

(1)x2﹣9=0;

(2)x2+4x﹣3=0

(3)(x﹣2)2=3(x﹣2)

(4)(x+3)2=(2x﹣1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.其中第九卷《勾股》主要講述了以測量問題為中心的直角 三角形三邊互求,之中記載了一道有趣的折竹抵地問題:

今有竹高一丈,末折抵地,去本四尺,問折者高幾何?

譯文:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn),則折斷后的竹子高度為多少尺?(備注:1=10尺)

如果設(shè)竹梢到折斷處的長度為尺,那么折斷處到竹子的根部用含的代數(shù)式可表示為__________尺,根據(jù)題意,可列方程為_______________________

查看答案和解析>>

同步練習(xí)冊答案