【題目】如圖1,將一塊含有角的三角板放置在一條直線上,邊與直線重合,邊的垂直平分線與邊分別交于兩點(diǎn),連接.

(1) 三角形;

(2)直線上有一動(dòng)點(diǎn)(不與點(diǎn)重合) ,連接并把繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接.當(dāng)點(diǎn)在圖2所示的位置時(shí),證明.我們可以用來(lái)證明,從而得到.當(dāng)點(diǎn)移動(dòng)到圖3所示的位置時(shí),結(jié)論是否依然成立?若成立,請(qǐng)你寫(xiě)出證明過(guò)程;若不成立,請(qǐng)你說(shuō)明理由.

(3)當(dāng)點(diǎn)邊上移動(dòng)時(shí)(不與點(diǎn)重合),周長(zhǎng)的最小值是 .

【答案】(1)等邊;(2)成立.理由見(jiàn)解析; (3)

【解析】

(1)根據(jù)旋轉(zhuǎn)可得:由有一個(gè)角是60度的等腰三角形是等邊三角形即可判斷三角形的形狀;

2)根據(jù)旋轉(zhuǎn)可得是等邊三角形,及是等邊三角形,我們可以用來(lái)證明,從而得到

3)將△PEC的周長(zhǎng)轉(zhuǎn)化為OP+BC,BC為固定長(zhǎng)度,只要求出OP的最小值即可得出答案.

(1)∵OD垂直平分BC

∴OB=OC

∵OB=OC,∠OBC=60°

是等邊三角形

故答案是:等邊

(2)成立.

理由如下:由旋轉(zhuǎn)可知,,

是等邊三角形,

.

知,是等邊三角形,

,

,

,

.

(3) 由旋轉(zhuǎn)可知,,

是等邊三角形,

.PE=OP

知,是等邊三角形,

,

,

,OP=OE

周長(zhǎng)為:PE+EC+PC=PE+BP+PC=OP+BC=OP+2

∴當(dāng)OP取得最小值時(shí),周長(zhǎng)

∵垂線段最短

∴當(dāng)OP⊥BC時(shí),OP取得最小值,此時(shí)

周長(zhǎng)的最小值為:

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABO

(1)點(diǎn)A關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為_(kāi)________,點(diǎn)B關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為_(kāi)________;

(2)判斷△ABO的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若一個(gè)三角形中,其中有一個(gè)內(nèi)角是另外一個(gè)內(nèi)角的一半,則這樣的三角形叫做半角三角形”. 例如:等腰直角三角形就是半角三角形”.在鈍角三角形中,,,,過(guò)點(diǎn)的直線邊于點(diǎn).點(diǎn)在直線上,且

1)若,點(diǎn)延長(zhǎng)線上.

當(dāng),點(diǎn)恰好為中點(diǎn)時(shí),依據(jù)題意補(bǔ)全圖1.請(qǐng)寫(xiě)出圖中的一個(gè)半角三角形_______;

如圖2,若,圖中是否存在半角三角形除外),若存在,請(qǐng)寫(xiě)出圖中的半角三角形,并證明;若不存在,請(qǐng)說(shuō)明理由;

2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請(qǐng)直接寫(xiě)出,, 滿足的數(shù)量關(guān)系:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在直線l上,點(diǎn)B在直線l外,點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)為C,連接AC,過(guò)點(diǎn)BBDAC于點(diǎn)D,延長(zhǎng)BDE使BE=AB,連接AE并延長(zhǎng)與BC的延長(zhǎng)線交于點(diǎn)F.

1)補(bǔ)全圖形;

2)若∠BAC=2α,求出∠AEB的大小(用含α的式子表示);

3)用等式表示線段EFBC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線經(jīng)過(guò)的直角頂點(diǎn)的邊上有兩個(gè)動(dòng)點(diǎn),點(diǎn)的速度從點(diǎn)出發(fā)沿移動(dòng)到點(diǎn),點(diǎn)的速度從點(diǎn)出發(fā),沿移動(dòng)到點(diǎn),兩動(dòng)點(diǎn)中有一個(gè)點(diǎn)到達(dá)終點(diǎn)后另一個(gè)點(diǎn)繼續(xù)移動(dòng)到終點(diǎn)過(guò)點(diǎn)分別作,垂足分別為點(diǎn).,設(shè)運(yùn)動(dòng)時(shí)間為,則當(dāng)___時(shí),以點(diǎn)為頂點(diǎn)的三角形與以點(diǎn)為頂點(diǎn)的三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校計(jì)劃從商店購(gòu)進(jìn)兩種商品,購(gòu)買(mǎi)一個(gè)商品比購(gòu)買(mǎi)一個(gè)商品多花10元,并且花費(fèi)300元購(gòu)買(mǎi)商品和花費(fèi)100元購(gòu)買(mǎi)商品的數(shù)量相等.

1)求購(gòu)買(mǎi)一個(gè)商品和一個(gè)商品各需要多少元;

2)根據(jù)學(xué)校實(shí)際情況,該學(xué)校需要購(gòu)買(mǎi)種商品的個(gè)數(shù)是購(gòu)買(mǎi)種商品個(gè)數(shù)的3倍,還多11個(gè),經(jīng)與商店洽談,商店決定在該學(xué)校購(gòu)買(mǎi)種商品時(shí)給予八折優(yōu)惠,如果該學(xué)校本次購(gòu)買(mǎi)兩種商品的總費(fèi)用不超過(guò)1000元,那么該學(xué)校最多可購(gòu)買(mǎi)多少個(gè)種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班數(shù)學(xué)興趣小組對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.

)自變量的取值范圍是全體實(shí)數(shù),的幾組對(duì)應(yīng)值列表:

其中__________

)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出了函數(shù)圖象的一部分,請(qǐng)畫(huà)出該函數(shù)圖象的另一部分.

)觀察函數(shù)圖象,寫(xiě)出一條函數(shù)的性質(zhì).

)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):

①方程__________個(gè)實(shí)數(shù)根.

②方程個(gè)實(shí)數(shù)根,的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A、C的坐標(biāo)分別為A(﹣3,0),C(1,0),

(1)求過(guò)點(diǎn)A、B的直線的函數(shù)表達(dá)式;

(2)在x軸上找一點(diǎn)D,連接DB,使得△ADB與△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);

(3)在(2)的條件下,如P、Q分別是ABAD上的動(dòng)點(diǎn),連接PQ,設(shè)AP=DQ=m,問(wèn)是否存在這樣的m使得以點(diǎn)A、P、Q為頂點(diǎn)的三角形與△ADB相似?如存在,請(qǐng)求出m的值;如不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題解決)

一節(jié)數(shù)學(xué)課上,老師提出了這樣一個(gè)問(wèn)題:如圖1,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過(guò)觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請(qǐng)參考小明的思路,任選一種寫(xiě)出完整的解答過(guò)程.

(類比探究)

如圖2,若點(diǎn)P是正方形ABCD外一點(diǎn),PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案