【題目】如圖,△ABC是等邊三角形,AB=,點D是邊BC上一點,點H是線段AD上一點,連接BH、CH.當(dāng)∠BHD=60°,∠AHC=90°時,DH=_____.
【答案】
【解析】如圖,作AE⊥BH于E,BF⊥AH于F,利用等邊三角形的性質(zhì)得AB=AC,∠BAC=60°,再證明∠ABH=∠CAH,則可根據(jù)“AAS”證明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三邊的關(guān)系得到HE=AH,AE=AH,則CH=AH,于是在Rt△AHC中利用勾股定理可計算出AH=2,從而得到BE=2,HE=1,AE=CH=,BH=1,接下來在Rt△BFH中計算出HF=,BF=,然后證明△CHD∽△BFD,利用相似比得到=2,從而利用比例性質(zhì)可得到DH的長.
作AE⊥BH于E,BF⊥AH于F,如圖,
∵△ABC是等邊三角形,
∴AB=AC,∠BAC=60°,
∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,
∴∠ABH=∠CAH,
在△ABE和△CAH中,
∴△ABE≌△CAH,
∴BE=AH,AE=CH,
在Rt△AHE中,∠AHE=∠BHD=60°,
∴sin∠AHE=,HE=AH,
∴AE=AHsin60°=AH,
∴CH=AH,
在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2,
∴BE=2,HE=1,AE=CH=,
∴BH=BE﹣HE=2﹣1=1,
在Rt△BFH中,HF=BH=,BF=,
∵BF∥CH,
∴△CHD∽△BFD,
∴=2,
∴DH=HF=×=,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點C作CE∥BD,過點D作DE∥AC,CE與DE相交于點E.
(1)求證:四邊形CODE是矩形.
(2)若AB=5,AC=6,求四邊形CODE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,點A坐標(biāo)為(0,1),點B坐標(biāo)為(0,﹣2),反比例函數(shù)(k≠0)的圖象經(jīng)過點C,一次函數(shù)y=ax+b(a≠0)的圖象經(jīng)過A、C兩點.
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點P是反比例函數(shù)(k≠0)圖象上的一點,△OAP的面積恰好等于正方形ABCD的面積,求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠ACB=90°,AC=6cm,∠ABC=30°,動點 P 從點 B 出發(fā),在 BA 邊上以每秒 2cm 的速度向點 A 勻速運動,同時動點 Q 從點 C 出發(fā),在 CB 邊上以每秒cm 的速度向點 B 勻速運動,運動時間為 t 秒(0≤t≤6),連接 PQ,以 PQ 為直徑作⊙O.
(1)當(dāng) t=1 時,求△BPQ 的面積;
(2)設(shè)⊙O 的面積為 y,求 y 與 t 的函數(shù)解析式;
(3)若⊙O 與 Rt△ABC 的一條邊相切,求 t 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地發(fā)生8.1級地震,震源深度20千米.救援隊火速趕往災(zāi)區(qū)救援,探測出某建筑物廢墟下方點C處有生命跡象.在廢墟一側(cè)某面上選兩探測點A、B,AB相距2米,探測線與該面的夾角分別是30°和45°(如圖).試確定生命所在點C與探測面的距離.(參考數(shù)據(jù)≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,已知頂點為P(0,2)的二次函數(shù)圖象與x軸交于A,B兩點,點A的坐標(biāo)為(2,0).
(1)求該二次函數(shù)的解析式,并寫出點B的坐標(biāo);
(2)點C在該二次函數(shù)的圖象上,且在第四象限,當(dāng)△ABC的面積為12時,求點C的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,和的平分線相交于點,過點作交于點,交于點,過點作于點,某班學(xué)生在一次數(shù)學(xué)活動課中,探索出如下結(jié)論,其中錯誤的是( )
A.B.點到各邊的距離相等
C.D.設(shè),,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,作出邊長為1的菱形ABCD,∠DAB=60°,連接對角線AC,以AC為邊作第二個菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC1=60°;…按此規(guī)律所作的第2017個菱形的邊長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com