【題目】如圖,的直徑,為弦,,

;

過(guò)點(diǎn)作,交點(diǎn),求的值.

【答案】;

【解析】

1)作OFDCF,連結(jié)OD,根據(jù)垂徑定理由OFDCDF=DC=3.在RtODF,利用勾股定理可計(jì)算出OF=4,然后根據(jù)梯形的面積公式計(jì)算即可

2)易證四邊形ABCD是等腰梯形,DGABG,根據(jù)等腰梯形的性質(zhì)得出DG=OF=4,AG=ABCD)=2.在RtADG,由勾股定理得出AD==2,再證明四邊形ADCE是平行四邊形,得出CE=AD=2,AE=CD=6,那么BE=ABAE=4.然后根據(jù)SBCE=BCCEsinBCE=BEDG,即可求出sinBCE=

1)作OFDCF,連結(jié)OC,如圖,∵OFDC,CF=DF=DC=×6=3

∵直徑AB=10,OD=5.在RtODF,OF==4S四邊形ABCD=×6+10×4=32;

2CDAB,=,AD=BC

CDAB,CDAB∴四邊形ABCD是等腰梯形

DGABG,DG=OF=4,AG=ABCD)=2.在RtADG,由勾股定理得AD==2,BC=AD=2

CEADCDAB,∴四邊形ADCE是平行四邊形,CE=AD=2AE=CD=6,BE=ABAE=4

SBCE=BCCEsinBCE=BEDG,×2×2sinBCE=×4×4,sinBCE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

1)實(shí)踐操作:中,,為直線上一點(diǎn),過(guò)點(diǎn)作,與直線相交于點(diǎn),如圖①,圖②,圖③所示,則的形狀為______.

2)問(wèn)題解決:等腰三角形是一種特殊的三角形,常與全等三角形的相關(guān)知識(shí)結(jié)合在一起解決問(wèn)題.如圖④,中,上一點(diǎn),延長(zhǎng)線上一點(diǎn),且,,求證:.

3)拓展與應(yīng)用,在(2)的條件下,如圖⑤,過(guò)點(diǎn)的垂線,垂足為,若,則的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC滿(mǎn)足PBE∽△DBC,APD是等腰三角形,PE的長(zhǎng)為數(shù)___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c過(guò)點(diǎn)A(0,2).

(1)若點(diǎn)(﹣,0)也在該拋物線上,求a,b滿(mǎn)足的關(guān)系式;

(2)若該拋物線上任意不同兩點(diǎn)M(x1,y1),N(x2,y2)都滿(mǎn)足:當(dāng)x1<x2<0時(shí),(x1﹣x2)(y1﹣y2)>0;當(dāng)0<x1<x2時(shí),(x1﹣x2)(y1﹣y2)<0.以原點(diǎn)O為心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B,C,且△ABC有一個(gè)內(nèi)角為60°.

求拋物線的解析式;

若點(diǎn)P與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱(chēng),且O,M,N三點(diǎn)共線,求證:PA平分∠MPN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b,c△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個(gè)相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.

(1)試判斷△ABC的形狀;

(2)若a,b為方程x2+mx-3m=0的兩個(gè)根,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前我國(guó)建立了比較完善的經(jīng)濟(jì)困難學(xué)生資助體系.某校去年上半年發(fā)放給每個(gè)經(jīng)濟(jì)困難學(xué)生389元,今年上半年發(fā)放了438元,設(shè)每半年發(fā)放的資助金額的平均增長(zhǎng)率為,則下面列出的方程中正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的例題,范例:解方程,

解:(1)當(dāng)≥0時(shí),原方程化為,解得:,(不合題意,舍去).

(2)當(dāng)<0時(shí),原方程化為,解得:,(不合題意,舍去).

∴原方程的根是,

請(qǐng)參照例題解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在中,,平分,,,那么的長(zhǎng)是 ____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在中,,平分,,,那么的長(zhǎng)是 ____________

查看答案和解析>>

同步練習(xí)冊(cè)答案